En 1976-1977, Janssens analyse la teneur en platine des brèches et conclut que la météorite était de type ferreuse (IIA). En 1980, Horn et El Goresy optent pour une météorite chondritique en analysant des micro-sphérules piégées dans des fissures au point de l’impact, nature confirmée en 2000 par Shukolyukov et Lugmair sur la base de la teneur en chrome.
En 1998, Schmidt, Palme et Kratz confirment les résultats initiaux de Janssens et concluent à une nature ferreuse magmatique de type IIA ou IIAB
En 2003, Tagle et Stöffler affinent les hypothèses et concluent en une météorite de type « ferreuse non magmatique » (IIE). Cette conclusion est remise en question quatre ans plus tard.
En 2007, Koeberl, Shukolyukov et Lugmair reprennent les études sur la proportion des isotopes de chrome contenus dans les roches de la région. Leurs mesures permettent de classer l’impacteur dans la famille des chondrites ordinaires. Mais, la dégradation importante des roches par les phénomènes hydrothermaux et atmosphériques qu’elles ont subis depuis 215 millions d’années leur interdit de déterminer avec plus de précision la nature de la météorite.
En 2009, Tagle associé à Schmitt et Erzinger revient sur son étude de 2003 et rejette les natures chondritiques et ferreuses magmatiques prônées par Janssens ou Koeberl. Il confirme la nature « ferreuse non magmatique », mais de type IA ou IIC (au lieu de IIE comme il l’avait conclu en 2003). Mais G. Schmidt s'oppose aux résultats de cette étude et réaffirme ses conclusions de 1997.
Le débat sur la nature de l’impacteur n’est donc pas encore achevé !
Les travaux de Horn et El Goresy ont permis de déterminer que la teneur (en masse) de la part métallique de la météorite était constituée de 73% de fer, 17% de chrome, 8% de nickel et 2% de cobalt. Si l'on considère que la densité de la roche météoritique sans ses métaux est de 2,80 (c'est la densité moyenne des roches anciennes sur Terre), on peut en déduire que la densité de la météorite de Rochechouart était de l’ordre de 3,35. Cette valeur est en accord avec les densités des fragments de chondrites que l’on trouve sur Terre (d = 3,40 ± 0,17 ).
Toutefois, si l’on considère les conclusions de Tagle (2009), la densité de la météorite doit être réévaluée à plus de 5,50.
Dans les deux cas, la nature de cette météorite donne une idée de sa provenance : la ceinture d’astéroïdes, située entre Mars et Jupiter qui contient de nombreux astéroïdes dont la masse totale ne dépasse pas 10% de la masse de Mars, mais dont les plus gros font quand même plus de 500 kilomètres de diamètre. Après avoir été décrochés de leur « salle d’attente » sous l’effet des mouvements de Jupiter, ils orbitent autour du Soleil et leur trajectoire peut croiser celle de la Terre. Leur vitesse d’impact est alors comprise entre 11 et 23 km/s.
La détermination de la taille de l’astéroïde est très aléatoire. La taille dépend non seulement de ses propriétés (nature, densité, vitesse, angle d’impact), mais aussi des théories dont les résultats divergent fortement.
À ce jour, trois outils sont disponibles pour estimer la taille des météorites. Ils mettent en application 5 théories différentes :
Pour les calculs, les données suivantes ont été retenues :
À une vitesse d’impact moyenne de 17 km/s, le diamètre est compris entre 750 m et 2600 m, les deux théories les plus récentes retournent environ 1600 m. On peut donc raisonnablement conclure que la météorite faisait environ 1,5 kilomètre de diamètre.