Les 2 configurations unidimensionnelles élémentaires du plan projectif d'incidence (PPI) sont : la droite, ensemble de points alignés ainsi que le « faisceau », ensemble de droites concourantes en un point.
Dans le droit héritage de la perspective de la Renaissance il est intéressant d'étudier certaines transformations telles que les transformations d'un alignement de points en un autre alignement de points, que l'on appelle les transformations unidimensionnelles. Par exemple la projection élémentaire d'une droite sur une autre, la transformation en deux étapes, la transformation en deux étapes lorsque les 3 droites sont concourantes, la transformation en N étapes. Quels sont les invariants d'une telle transformation, quels axiomes sont indispensables ?
Lorsque l'on effectue une transformation unidimensionnelle en N étapes et que l'on revient sur la droite de départ, quelles sont les conditions pour que cette transformation laisse tous les points fixes ?
Sur un plan en dimension 2, on envisage aussi les transformations bidimensionnelles, celles qui transforment un point du plan en un autre point du plan. Parmi elles, celles qui conservent l'alignement des points ; conservent-elles aussi la convergence des droites ? Parmi elles, celles qui laissent fixes seulement les points d'une droite particulière, appelées dilatations. Comment ces différentes transformations se combinent-elles, leur loi de composition interne fait-elle apparaître des structures de monoïde, de groupe, le produit de 2 transformations est-il toujours commutatif ?
Si l'on observe la configuration de Désargues, on constate que 4 couples de triangles peuvent être créés. En plus de ABC-A'B'C' sur lequel on a coutume de travailler, il y a aussi ABC'-A'B'C, AB'C'-A'BC et AB'C-A'BC' qui donnent 3 nouvelles droites de Désargues, d'où un quadrilatère complet ; de plus, la même étude combinatoire menée sur le théorème dual conduit à 4 triangles qui donnent, outre le point O, 3 autres points de convergence des côtés, d'où un quadrangle complet. Quelles sont les propriétés de ce quadrangle et de ce quadrilatère, comment se déduisent-ils l'un de l'autre ? La configuration de Pappus offre une plus forte permutation ; il y a 6 hexagrammes non dégénérés (A1 C2 B1 A2 C1 B2, dessiné ci-contre ; A1 C2 B1 B2 C1 A2 ; A1 B2 B1 C2 C1 A2 ; A1 B2 B1 A2 C1 C2 ; A1 A2 B1 B2 C1 C2 ; A1 A2 B1 C2 C1 B2 ; ), donc 6 droites de Pappus. Quelles sont les propriétés de ces 6 droites ? En fait on peut démontrer qu'elles sont concourantes en deux groupes de 3. Mais de quels axiomes minimaux a-t-on besoin pour démontrer cette propriété ? L'axiome Fondamental de la géométrie projective est-il indispensable ? l'axiome de Désargues suffirait-il ? Quant à l'hexagramme de Pascal (voir Traité projectif des coniques), de nombreux mathématiciens du XIXe siècle se sont penchés sur les diverses permutations du parcours des 6 points. Il s'agit particulièrement de Bauer, Catalan, Cayley, Fontaneau, Gräfe, Grossmann, Hesse, Jörres, Kirkman, Ladd-Franklin-Christine, Little