Lorsque l’on aborde les plans projectifs selon une cascade d’axiomes reliés par une cascade de théorèmes il est possible d’hésiter, la tentation de tout démontrer d’un seul coup avec un théorème très puissant est forte, ou la tentation de tout démontrer algébriquement.
Une première alternative s'est posée à divers auteurs dans leur tentative de formalisation : géométrie pure ou géométrie analytique ? En effet depuis Descartes puis Newton, Liebnitz, Euler la géométrie s'est progressivement algébrisée à tel point qu'il est désormais courant que l'on définisse le plan projectif comme un être particulier d'une branche abstraite telle que la géométrie algébrique (un PP est une certaine « variété ») ou la géométrie combinatoire (un PP d'ordre n est un ensemble de n2+n+1 points et droites tels que...) ou découlant d'un espace vectoriel (un PP est un EV-{000}). À partir de ces définitions il sera facile de démontrer les théorèmes de Pappus et de Désargues, les propriétés de transformations homographiques voire réinventer les coniques, les polaires, les tangentes, les intersections sans oublier le birapport. C'est ce que fit Jules Molk dans sa géométrie algébrique plane de 1915 rééditée en 1992. La démarche opposée est celle des géomètres « purs ». On ne fait rien par le calcul, on démontre tout en pure géométrie. Poncelet (1788-1867) d'ailleurs affirme le projet de « rendre la géométrie enfin indépendante de l'analyse algébrique ». Autant que possible on suivra cette tendance qui finalement revient à formaliser la démarche artisanale des peintres depuis au moins la Renaissance.
Certains auteurs partent de quelques grands axiomes, quelques grands théorèmes, toutes les propriétés des plans projectifs en découlent. Par exemple Coxeter, Toronto 1987 à partir des « projectivities », du théorème fondamental et des polarités démontre rapidement -quelques pages- tout depuis le théorème de Pappus jusqu'aux coniques. De même dans l'exemple précité Jules Molk dans sa géométrie algébrique plane part de C^3-{000} et étudie tout sur les coniques. C'est particulièrement rapide et efficace. L'autre démarche consiste à examiner avec précision les explications de telle ou telle propriété, à en retrouver les fondements axiomatiques. C'est une méthode minimaliste, démontrer le maximum de choses avec un minimum d'axiomes. Autant que possible nous suivrons ici cette tendance. On peut se poser certaines questions :
Articles de géométrie projective ou voisins à consulter. | |
Hexagramme de Pascal • Axiomes de plans projectifs • Théorème de Pappus • Théorème de Desargues • Dualité • Axiomes de plans projectifs/Suite des axiomes • Axiomes de plans projectifs/homogènes • Axiomes de plans projectifs/barycentriques • Plan affine • Théorème d'Hessenberg • Traité projectif des coniques • Traité projectif des coniques/Dans un plan pappusien • Conique • Octonions • Relation d'équivalence • Structure de corps • Construction d'un cercle point par point • Construction d'une parabole tangente par tangente • Plan de Fano • Portail:Géométrie • Géométrie analytique • Géométrie synthétique • Géométrie • Géométrie projective • Géométrie non euclidienne • Division harmonique • Rapport anharmonique • Application projective • Fonction homographique • Perspective • Perspective conique • Infini • Droite (mathématiques) |