En physique théorique, des équations différentielles, posées en termes de champs tensoriels sont une manière très générale pour exprimer les relations à la fois géométriques par nature et liées au calcul différentiel. Pour formuler de telles équations, il faut connaître la dérivée covariante. Cela permet d'exprimer la variation d'un champ tensoriel le long d'un champ vectoriel.
La notion d'origine du calcul différentiel absolu, plus tard renommé calcul tensoriel, amena à dégager le concept géométrique de connexion.
L'expression mathématique contemporaine de l'idée du champ tensoriel la décompose en un concept à deux étapes.
Il y a l'idée du fibré vectoriel, qui est l'idée naturelle de « l'espace vectoriel dépendant de paramètres » - les vecteurs en étant une variété. Par exemple, un « espace vectoriel d'une dimension dépendant d'un angle » pourrait ressembler à un ruban de Möbius ainsi qu'à un cylindre. Étant donné le fibré vectoriel V sur M, le concept de champ correspondant s'appelle section du fibré : pour m variant sur M, un choix du vecteur vm enVm, l'espace vectoriel à m.
Puisque le concept du produit tensoriel est indépendant de quelque choix de base, prendre le produit tensoriel de deux fibré vectoriels sur M est courant. En commençant avec le fibré tangentiel (le fibré des espaces tangentiels), tout le processus expliqué au traitement des tenseurs libre de composés se porte à la routine - encore indépendamment de coordonnées, tel mentionné dans l'introduction.
Enfin, on peut donner la définition du champ tensoriel, nommément comme la section d'un fibré tensoriel. Cela est alors garantie de contenu géométrique, puisque toute chose a été faite d'une manière intrinsèque.