Champ tensoriel - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Articles scientifiques
sur les tenseurs
Généralités

Tenseur

Mathématiques

Tenseur (mathématiques)
Produit tensoriel
... de deux modules
... de deux applications linéaires
Algèbre tensorielle
Champ tensoriel
Espace tensoriel

Convention d'Einstein
Tenseur métrique
Tenseur énergie-impulsion
Tenseur de Riemann
... de Ricci
... d'Einstein
... de Weyl
... de Levi-Civita
... de Killing
... de Killing-Yano
... de Bel-Robinson
... de Cotton-York
Tenseur électromagnétique
Tenseur des contraintes
Tenseur des déformations

Articles connexes

Modules
Algèbre extérieure

Portail des Mathématiques
Portail de la Physique

En mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée du champ vectoriel, qui peut être conçu comme un « vecteur qui varie de point en point ».

Il devrait être noté que plusieurs structures mathématiques appelées familièrement « tenseurs » sont en fait des champs tensoriels, des champs définis sur une variété qui définissent un tenseur à chaque point de la variété. Voir l'article tenseur pour une introduction élémentaire aux tenseurs.

L'intuition géométrique pour un champ vectoriel est d'une « flèche attachée à chaque point de la région », à longueur et direction variables. Notre idée d'un champ vectoriel en un espace courbé est appuyée par l'exemple d'une carte météorologique montrant la vélocité horizontale du vent, à chaque point de la surface de la Terre.

L'idée générale du champ tensoriel combine l'exigence de géométrie plus riche - par exemple une ellipse variant de point en point - avec l'idée que nous ne voulons pas que notre notion dépende de la méthode particulière de tracer une surface. Elle devrait exister indépendamment de la latitude et de la longitude, ou n'importe quelle projection cartographique que nous utilisons pour introduire les coordonnées numériques.

Définition

En géométrie différentielle, un (champ de) tenseur est un objet défini sur les variétés autorisant à parler de champs d'endomorphismes, de champs d'applications multilinéaires au même titre que les champs de vecteurs. Ils généralisent les outils correspondants d'algèbre linéaire. Les tenseurs sont aussi des outils nécessaires pour effectuer de l'analyse sur les variétés. Parmi les tenseurs importants en mathématiques, citons les métriques riemanniennes ou les tenseurs de courbure.

Il existe plusieurs approches pour définir un tenseur. L'approche formelle, en usage en mathématiques, consiste à définir les tenseurs comme sections globales de fibrés vectoriels obtenus par produit tensoriel, algèbre extérieure et algèbre symétrique à partir de l'espace tangent et de l'espace cotangent. La seconde approche consiste à introduire des matrices de fonctions correspondant à l'expression du tenseur dans des cartes locales, vérifiant des invariances ou contravariances par changements de cartes. Cette approche est systématique en physique, et en particulier en relativité générale, en mécanique générale et en mécanique des milieux continus : les objets ne se posent pas a priori comme sections de fibrés mais s'imposent a posteriori comme tels par cohérence dans les calculs ou dans la théorie.

Page générée en 0.102 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise