La chromatographie en phase liquide à haute performance — CLHP, mais on trouve plus fréquemment l'abréviation anglaise HPLC (high performance liquid chromatography) depuis les années 1990 — est une technique de séparation analytique en fonction de l'hydrophobicité et préparative des molécules d'un composé ou un mélange de composés. Pour certains, HP signifie « haute pression ».
Cette forme de chromatographie est fréquemment utilisée en biochimie, ainsi qu'en chimie analytique.
L'échantillon à analyser est poussé par un liquide (appelée phase mobile) dans une colonne remplie d'une phase stationnaire de fine granulométrie (les "grains" sont de très petite taille). Le débit d'écoulement de la phase mobile est élevé ce qui entraîne une augmentation de la pression dans le système. Ce débit élevé diminue le temps nécessaire pour séparer les composants le long de la phase stationnaire. La fine granulométrie de la phase stationnaire permet une meilleure séparation des composants. En effet, pour un même volume de phase stationnaire la surface d'échange augmente si les "grains" qui la composent sont de diamètre plus petit. Les pics obtenus sont plus étroits donc la résolution est améliorée (les pics sont bien séparés, on peut donc bien les différencier), le seuil de détection est également plus bas (des pics étroits et hauts sont plus faciles à isoler du bruit de fond que des pics larges et bas). La combinaison de ces attributs - rapidité et résolution élevées - conduit à l'appellation « haute performance ».
Les solvants utilisés sont des combinaisons miscibles d'eau et de divers liquides organiques (alcools, acétonitrile, dichlorométhane, ...).
Souvent, la composition de la phase mobile est modifiée au cours de l'analyse, c'est le mode dit "gradient" ou "élution graduée" (en opposition au mode "isocratique", pour lequel la composition de la phase mobile reste la même tout au long de l'analyse). Par exemple, sur une colonne apolaire, en utilisant un mélange eau/méthanol comme phase mobile, les composants les plus hydrophobes sont élués avec une concentration élevée en méthanol alors que les composants plus hydrophiles sont élués préférentiellement avec une concentration faible en méthanol. Selon la nature de la phase stationnaire, on commencera par une concentration élevée en méthanol ou le contraire.
Les colonnes en phase normale sont des colonnes dont la phase stationnaire est polaire et acide.
La phase normale la plus utilisée est à base de gel de silice : à sa surface se trouvent des groupes silanols (-OH) et des groupes siloxanes (-O-). Ces groupes permettent à la silice de retenir les composés à analyser par des liaisons hydrogènes.
Cette phase sert ainsi principalement à séparer des composés polaires.
La base d'une phase inverse est une phase normale sur laquelle des chaînes alkyles (ou autres selon la polarité recherchée) ont été greffées au niveau des groupes silanols (end-capping). En général, la phase stationnaire est majoritairement composée de petites particules de silice sur lesquels on a greffé des fonctions chimiques, le plus souvent de chaines alkyles à 8 ou 18 atomes de carbones.
Les fonctions silanols (Si-OH) qui subsistent engendrent des interactions hydrophiles parasites, qui rendent les résultats non reproductibles surtout pour les molécules basiques. Pour éviter cela, la surface de la silice est généralement recouverte par une fonction méthyle et les fonctions silanols ne sont plus libres mais sous la forme (Si-O-CH3), c'est cette étape que l'on appelle "end-capping". Les fonctions chimiques utilisées pour le "end-capping" peuvent toutefois être de nature très diverses et les colonnes de dernières générations résistant à des pH extrêmes sont généralement "end-capped" avec des fonctions proposant une plus grande gène stérique, tel que le tert-butyle (Si-O-C(CH3)3).
Selon le taux de greffage, on obtient une plus ou moins grande résolution.
Cette phase stationnaire est dite "inverse" car de polaire et hydrophile (sans les "greffes"), la phase devient apolaire et hydrophobe.