Décomposition de Dunford - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Réduction de Jordan

La décomposition de Dunford, combinée avec la décomposition de Frobenius permet d'obtenir la réduction de Jordan en dimension finie. En effet, d et n commutent donc les sous-espaces propres de d sont stables par n.

La restriction de n au sous-espace propre admet une matrice formée de blocs de Jordan nilpotents ce qui donne, en ajoutant λIp, des blocs de Jordan pour d+n dans une base adaptée. Ainsi on obtient une matrice diagonale par blocs formée de blocs de Jordan en utilisant l'union de ces bases.

Page générée en 0.089 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise