Éléments d'Euclide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Couverture de la première édition anglaise des Éléments par Henry Billingsley, 1570

Les Éléments (en grec ancien Στοιχεία / Stoikheía) sont un traité mathématique et géométrique, constitué de 13 livres organisés thématiquement, probablement écrit par le mathématicien grec Euclide vers 300 av. J.-C. Il comprend une collection de définitions, axiomes, théorèmes et leur démonstration sur les sujets de la géométrie euclidienne et de la théorie des nombres primitive.

Les Éléments sont le plus ancien exemple connu d'un traitement axiomatique et systématique de la géométrie et son influence sur le développement de la logique et de la science occidentale est fondamentale. Il s'agit probablement du recueil qui a rencontré le plus de succès au cours de l'Histoire : les Éléments furent l'un des premiers livres imprimés (Venise, 1482) et n'est précédé que par la Bible pour le nombre d'éditions publiées (largement plus de 1 000). Pendant des siècles, il a fait partie du cursus universitaire standard.

Principes

La méthode d'Euclide a consisté à baser ses travaux sur des définitions, des "demandes" (postulats) , des « notions ordinaires » (axiomes), et des propositions (problèmes résolus). Par exemple, le livre I contient 35 définitions (point, ligne, surface, etc.), cinq postulats et cinq notions ordinaires.

Postulats du livre I :

  1. Un segment de droite peut être tracé en joignant deux points quelconques.
  2. Un segment de droite peut être prolongé indéfiniment en une ligne droite.
  3. Etant donné un segment de droite quelconque, un cercle peut être tracé en prenant ce segment comme rayon et l'une de ses extrémités comme centre.
  4. Tous les angles droits sont congruents.
  5. Si deux lignes sont sécantes avec une troisième de telle façon que la somme des angles intérieurs d'un côté est inférieure à deux angles droits, alors ces deux lignes sont forcément sécantes de ce côté.

Notions ordinaires du livre I :

  1. Des choses qui sont égales à une même chose sont égales entre elles.
  2. Si des choses égales sont ajoutées à d'autres choses égales, leurs sommes sont égales.
  3. Si des choses égales sont soustraites à d'autres choses égales, les restes sont égaux.
  4. Des choses qui coïncident avec une autre sont égales entre elles.
  5. Le tout est plus grand que la partie.

Histoire

Les premières traces écrites des notions de longueurs et d'orthogonalité sont babyloniennes et remontent à une période située entre 1900 et 1600 av. J.-C.. On y trouve la connaissance du théorème de Pythagore au moins pour le cas d'un triangle dont les côtés sont de longueurs respectives trois, quatre et cinq.

La première formalisation est rassemblée dans un livre appelé Les Éléments. Il contient tout le savoir mathématique de l'époque. Bien que la plupart des théorèmes leurs soient antérieurs, les Éléments étaient suffisamment complets et rigoureux pour éclipser les œuvres géométriques qui les ont précédés et peu de choses sont connues sur la géométrie pré-euclidienne.

Son auteur Euclide d'Alexandrie est un mathématicien grec qui fut probablement un disciple d'Aristote . Son histoire ainsi que celle de ce livre sont mal connues. Trois hypothèses sont avancées à son sujet. Euclide est:

  • soit un personnage historique principal auteur des Eléments,
  • soit à la tête d'une école mathématique
  • soit un nom d'auteur qu'a utilisé un groupe de mathématiciens pour rédiger une compilation, ce nom serait alors une référence au philosophe grec Euclide de Mégare .

Si la première hypothèse a été admise sans l'ombre d'un doute pendant plus de 2000 ans, elle reste encore la plus vraisemblable. En revanche, il est pratiquement établi qu'Euclide était à la tête d'une école mathématique vigoureuse et ses disciples ont certainement contribué à la rédaction des Eléments. Hippocrate de Chios est l'auteur du contenu des livres I et II des éléments, si on en croit le philosophe byzantin Proclos . Il écrit de lui « Il était le premier à écrire pour la compilation maintenant connue sous le nom des Eléments ».

L'ouvrage fut traduit en arabe après avoir été donné aux Arabes par l'Empire byzantin, puis traduit en latin d'après les textes arabes (Adelard de Bath au XIIe siècle, repris par Campanus de Novare). La première édition imprimée date de 1482 et le livre fut depuis traduit dans une multitude de langues et publié dans plus de 1 000 éditions différentes. Des copies du texte grec existent toujours, par exemple dans la bibliothèque du Vatican ou à la Bodleian Library à Oxford, mais ces manuscrits sont de qualité variable et toujours incomplets. Par analyse des traductions et des originaux, il a été possible d'émettre des hypothèses sur le contenu originel, dont il ne subsiste aucune copie intégrale.

Page générée en 0.160 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise