Extension séparable - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définitions et premiers exemples

Dans la suite de l'article, K désigne un corps, L une extension algébrique, P(X) un polynôme formel à coefficients dans K et scindé sur L et l un élément de L. Ω désigne la clôture algébrique de K, dans cet article, toute extension est identifiée à un sous-corps de Ω. Cette identification est licite, d'après le paragraphe sur la clôture algébrique.

  • P(X) est séparable dans L si et seulement s'il possède autant de racines distinctes que son degré. Le polynôme est donc scindé sans racine multiple.
  • L est séparable dans K si et seulement si tous ses éléments le sont.
  • K est un corps parfait si et seulement si toutes ses extensions algébriques sont séparables.

Le polynôme X3-2 sur le corps des nombres rationnels est séparable. En effet, il possède trois racines, une réelle : la racine cubique de deux et deux complexes conjuguées entre elles. les trois racines sont distinctes. De manière générale sur les nombres rationnels, tout polynôme irréductible est séparable.

Cependant, tous les polynômes irréductibles ne sont pas séparables. Considérons Fp(X) le corps des fractions rationnelles sur le corps fini de cardinal p, où p est premier, et Ω sa clôture algébrique. Si K est choisi comme étant égal à l'ensemble des fractions de Fp(Xp), alors K contient un polynôme non séparable. Considérons le polynôme P(X) de K[Y] égal à Yp-Xp. Ce polynôme possède une unique racine X qui est donc un élément algébrique de degré p. De plus ce polynôme est irréductible. On en déduit que Fp(X) est le corps de décomposition du polynôme P(X). Comme X est sa seule racine, P(X) n'est pas séparable.

Propriétés

Morphisme dans la clôture algébrique

L'une des raisons essentielles de l'intérêt de la notion de séparabilité provient du nombre de morphisme de corps de L dans Ω laissant invariant K. Cette propriété est utilisée pour le théorème de l'élément primitif et pour de nombreuses propriétés des extensions galoisiennes. L'unique cas traité ici est celui ou L est une extension finie. Dans la suite de l'article, L est toujours supposé finie de dimension n. Le cas ou il existe un élément l générateur de l'extension est traité par la proposition suivante:

  • S'il existe un élément l tel que K(l) est égal à L alors il existe au plus n morphismes de L dans Ω. Si l est séparable, alors il existe exactement n morphismes.

Dans le cas général, c’est-à-dire sans hypothèse de séparabilité ni de simplicité de l'extension, une propriété analogue est toujours vraie.

  • Le nombre de morphismes de L dans Ω laissant invariant K est inférieur ou égal à n.s

Elle se démontre à l'aide de la propriété suivante:

  • Soit une famille finie de m morphismes de L dans Ω. Si les morphismes sont distincts deux à deux, alors la famille est libre.

Dans le cas particulier où l'extension est engendrée par des éléments séparables, l'hypothèse de simplicité de l'extension n'est pas nécessaire pour obtenir un résultat analogue à la première proposition:

  • Si L est engendré par des éléments séparables alors il existe exactement n morphismes de corps de L à valeur dans Ω laissant invariant K.

Pour la démonstration, les propositions suivantes sont utilisées :

  • Si L est une extension finie de K1 et K1 une extension de K, alors un morphisme de K1 dans Ω laissant invariant K se prolonge en un morphisme de L dans Ω laissant invariant K.
  • Si L est une extension de K1 contenant n1 morphismes de L dans Ω laissant invariant K1 et K1 une extension de K contenant n2 morphismes de K1 dans Ω laissant invariant K, alors il existe au moins n1.n2 morphismes de L dans Ω laissant invariant K.

Théorème de l'élément primitif

Toutes les propriétés du paragraphe précédent peuvent se résumer par le fait que, dans le contexte des extensions finies L sur K, la séparabilité implique que le nombre de morphismes est égal à la dimension de L sur K. Une analyse plus fine montre que les deux propriétés sont équivalentes. Ces deux propriétés sont aussi équivalente à une troisième: l'extension est engendrée par un unique élément séparable. Ainsi, pour une famille importante de corps, celle des corps parfaits contenant non seulement les corps usuels mais aussi tous les corps finis, toute extension finie est non seulement séparable, mais il existe autant de morphismes que la dimension de l'extension et l'extension est simple. Ce résultat se résume dans par un théorème fondamental pour la théorie de Galois, connu sous le nom de l'élément primitif.

  • Les quatre conditions suivantes sont équivalentes:
  1. L'extension L est séparable sur K.
  2. L'extension est engendrée par des éléments séparables.
  3. Il existe exactement n morphismes de L dans Ω laissant invariant K.
  4. L est une extension simple générée par un élément séparable.

La démonstration est donnée dans l'article détaillé.

Forme trace

Il existe un critère nécessaire et suffisant pour qu'une extension finie soit séparable, elle utilise la forme trace, une forme bilinéaire de L. Soit φ l'application qui à a associe l'endomorphisme φa défini par :

\forall x \in \mathbb L,\quad \varphi_a(x) = ax \;

La forme trace associe à deux éléments a et b de L la trace de l'endomorphisme φab.

  • L'extension L est séparable sur K si et seulement si la forme trace est non dégénérée.

La démonstration est donnée dans l'article détaillé.

Page générée en 0.095 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise