Une fraction, en mathématiques, est de manière naïve un certain nombre de parts considérés après la division d'un nombre entier en parts égales. Par exemple, la fraction désigne le quotient de 56 par 8. Elle est égale à 7 car 7×8 = 56. Dans cette fraction, 56 est appelé le numérateur et 8 le dénominateur.
Les nombres que l'on peut représenter par des fractions de nombres entiers sont appelés nombres rationnels. L'ensemble des rationnels est noté .
Il existe une définition plus générale et plus abstraite des fractions. Si (A, +, .) est un anneau commutatif unitaire intègre, on peut créer le corps des fractions de A. Ses éléments se notent (par analogie aux fractions d'entiers relatifs) et possèdent les mêmes propriétés opératoires (somme, produit, simplification, ...) que les fractions de .
Une fraction est une division non effectuée entre deux nombres entiers relatifs n et d . Elle est représentée comme suit :
Exemple : signifie que l'on divise 3 par 7; on prononce cette fraction « trois septièmes » et c'est pour cela que 3 est le numérateur parce qu'il indique un nombre de trois unités (les septièmes) alors que 7 est le dénominateur parce qu'il dénomme l'unité (le septième) avec laquelle on travaille.Si on mange les 3/7 d'une tarte, le numérateur 3 indique le nombre de parts que l'on mange alors que 7 indique le nombre total de parts, donc l'unité considérée...
On trouve aussi parfois la notation
ou encore
les deux points remplaçant la barre de fraction (cette notation est à éviter). deux points (:) signifie que le resultat de la fraction sera un nombre entier,:- signifie qu'il sera décimal
Pour comprendre et établir les règles de maniements des fractions, il existe deux méthodes différentes. La première consiste à faire usage de la géométrie. La fraction représente une portion d'aire d'une figure géométrique ou d'une longueur d'un côté d'un polygone, souvent un triangle. Démontrer les lois régissant les fractions revient à faire de la géométrie et à mesurer des aires ou des longueurs. Cette démarche est décrite dans l'article Algèbre géométrique.
Une autre démarche est de nature purement algébrique. Les nombres rationnels sont construits de manière abstraite à partir de classes d'équivalence d'entiers. L'addition et la multiplication issues des nombres entiers sont compatibles avec la classe d'équivalence, ce qui équipe l'ensemble des fractions d'une addition et d'une multiplication naturelle. Cette construction permet d'établir les lois régissant le comportement des fractions.
La démarche choisie ici correspond à la première décrite et est purement géométrique. Les méthodes utilisées s'appliquent pour les fractions d'entiers. La géométrie offre une autre méthode, permettant de généraliser les résultats au cas de fractions de deux nombres réels positifs. Elle est décrite dans l'article Algèbre géométrique.
Le but ici est de visualiser une fraction n/d
La fraction peut être représentée par un dessin. Bien souvent une forme géométrique que l'on divise en plusieurs parties.
1° Le dénominateur d indique le nombre de parties égales à dessiner dans la forme géométrique.
2° Le numérateur n indique le nombre de parties égales utilisées.
Exemple :
Choisissons un rectangle comme forme géométrique et la fraction 3⁄4
Le dénominateur est 4 donc le rectangle sera divisé en 4 parties égales
Le numérateur est 3 donc seules 3 parties égales seront utilisées.
Cette fraction sera équivalente au quotient de n/d, (qui représentera le nombre d'unité) suivi d'une fraction constituée par le reste de la division pour numérateur et d pour dénominateur.
Il est impossible de représenter ce genre de fraction par un schéma unique, nous utiliserons dès lors plusieurs formes géométrique similaires:
Pour prendre les 2⁄3 de 750, on divise 750 par 3, puis on multiplie le résultat par 2:
Prendre a⁄b de c revient à diviser c par b et à multiplier le tout par a. Ou plus simplement, quand on connaît les règles de calcul sur les fractions, Prendre a⁄b de c revient à multiplier a⁄b par c. Plus généralement, on constate que le "de" est remplacé par une multiplication. Il en est de même quand on calcul 75% de c, on doit juste calculer 75% multiplié par c. En effet, 75% est une fraction : 75% = 75⁄100 = 0,75.
Si on multiplie, ou divise, le numérateur et le dénominateur d'une fraction par un même nombre, on obtient une fraction équivalente.
Exemple : (on a multiplié 2/3 par 2/2)
De manière générale, les fractions n⁄d et n'⁄d' sont équivalentes dès que n × d' = d × n'.
Certaines fractions peuvent être simplifiées, c'est-à-dire que n et d peuvent être divisés par un même nombre mais le plus grand possible. Ce nombre s'appelle le PGCD (plus grand commun diviseur) de n et d. Après réduction, la fraction est dite irréductible.
Pour effectuer certaines opérations entre fractions, tous les dénominateurs des fractions doivent être égaux. Pour ce faire, il faut remplacer chaque fraction par une fraction équivalente, en s'arrangeant pour que tous les dénominateurs soient identiques. Ce dénominateur sera le plus petit nombre possible qui soit divisible par chaque dénominateur. Ce nombre s'appelle le PPCM (plus petit commun multiple) des dénominateurs. L'opération s'appelle réduire au même dénominateur
Exemple :
Remarque : on peut aussi utiliser l'écriture décimale comme par exemple 1/4 = 0,25 et 2/5 = 0,4, 0,25 < 0,4 donc 1⁄4 < 2⁄5.
Toute fraction possède un développement décimal fini ou illimité périodique qui s'obtient en posant la division de n par d.
Inversement, tout nombre décimal ou possédant un développement décimal périodique peut s'écrire sous forme de fraction.
Il suffit de prendre comme numérateur le nombre décimal privé de sa virgule et comme dénominateur 10n où n est le nombre de chiffres après la virgule:
On commence par se débarrasser de la partie entière: 3,4545... = 3 + 0,4545...
Un nombre périodique simple est un nombre décimal dans lequel la période commence immédiatement après la virgule.
0,666 ou 0,4545 ou 0,108108
Comme numérateur, il suffit d'utiliser la période tandis que le dénominateur sera composé d'autant de 9 qu'il y a de chiffres composant la période.
Exemple : 0,4545
Période 45 donc numérateur = 45
Période composée de deux chiffres donc dénominateur = 99
Fraction = 45/99 ou 5/11 par conséquent: 3,4545... = 3 + 5/11 = 38/11
Sinon : Posons x pour 0,4545454545...
100x=45,4545454545 donc 99x=45 donc x = 45/99
Un nombre décimal périodique mixte est un nombre décimal dans lequel la période ne commence pas immédiatement après la virgule.
0,8333 ou 0,14666
Pour trouver le numérateur de la fraction, il faut soustraire la valeur mixte de la valeur mixte suivie de la première période. Exemple : 0,36981981...
valeur mixte : 36
Valeur mixte suivie de la première période : 36981
Numérateur = 36981 - 36 = 36945
Quant au dénominateur, il sera composé d'autant de 9 qu'il y a de chiffres composant la période, suivis d'autant de zéros qu'il y a de chiffres après la virgule composant la valeur mixte.
Exemple 1 : dans la valeur 0,36981981, la période 981 est constituée de 3 chiffres donc le dénominateur sera constitué d'une série de trois 9 suivis de deux zéros puisque la valeur mixte 36 est composée de deux chiffres. Finalement nous aurons :
0,36981981 = 36945/99900 ou 821/2220
Exemple 2 :