Fusion aneutronique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Recherches actuelles

De nombreux efforts visent à réaliser la fusion hydrogène-bore, en utilisant divers dispositifs de fusion. L'une de ces approches, qui utilise le « dense plasma focus », a reçu des financements du Jet Propulsion Laboratory de la NASA, de l’Air Force Research Laboratory et de la Commission chilienne de l’énergie nucléaire, parmi d’autres. En 2001, Lawrenceville Plasma Physics (LPP) Inc a annoncé avoir atteint des énergies ioniques supérieures à 100 keV en utilisant un dispositif « plasma focus » à la Texas A&M University. Un essai de cette approche, connue également sous le nom de « focus fusion », est en cours dans un projet conjoint avec LPP, dans le Laboratoire des plasmas thermonucléaires à Santiago, Chili. Les chercheurs de l’Université de l’Illinois et de l’Air Force Research Laboratory ont décrit la façon dont un dispositif « dense plasma focus » utilisant un combustible hydrogène-bore peut être employé pour la propulsion spatiale.

Dans une autre approche, dont Robert Bussard est le pionnier, et financée par l’US Navy, un dispositif particulier de confinement inertiel électrostatique appelé Polywell est utilisé.

Aucune de ces approches n'ayant encore donné lieu à des tests réels avec du combustible hydrogène-bore, les performances prévues sont fondées sur une extrapolation de la théorie, des résultats expérimentaux avec d’autres combustibles, et des simulations.

Bien que les dispositifs z-pinch n’aient pas été mentionnés comme de possibles réacteurs hydrogène-bore, les énergies ioniques appropriées pour de telles réactions, jusqu’à 300 keV, ont été annoncées par des chercheurs sur la Z machine des Laboratoires Sandia.

En 2005, une équipe russe a réussi une première fusion aneutronique hydrogène-bore grâce à un laser picoseconde. Le nombre des réactions de fusion induites (de l’ordre de 103 particules α émises pour chaque impulsion laser) reste cependant encore extrêmement faible.

Enjeux techniques

Température

Malgré l'intérêt de la fusion aneutronique, l'effort de recherche en fusion est allé pour l'essentiel vers la fusion 2D-3T, parce que les problèmes que pose le couple hydrogène-bore (p-11B) ont été jugés très difficiles à surmonter. Pour commencer, la fusion hydrogène-bore exige que l'énergie ou la température des ions soit au moins dix fois supérieure à ce qui est nécessaire pour la fusion 2D-3T. La réactivité du couple hydrogène-bore atteint son maximum aux environs de 600 keV (plus de 6 milliards de kelvins), alors pour le couple 2D-3T le pic est aux environs de 66 keV (730 millions de kelvins).

Bilan énergétique

En outre, la réactivité maximale du couple p-11B n'est que de l'ordre du tiers de celle du couple 2D-3T, ce qui impose que le confinement de l'énergie du plasma soit réalisé dans des conditions plus draconiennes. Le confinement est généralement caractérisé par le temps τ pendant lequel l'énergie doit être retenue pour que la puissance produite par la fusion dépasse celle nécessaire au chauffage du plasma. On peut exprimer ces conditions à l'aide de divers critères dérivés, les plus courants combinant le temps et la densité dans le produit nτ, le temps, la densité et la pression dans le produit nTτ ; ces critères sont appelés l'un et l'autre critère de Lawson. Le facteur nτ nécessaire pour la réaction p-11B est 45 fois plus élevé que pour la réaction 2D-3T, le facteur nTτ étant 500 fois plus élevé. Les propriétés de confinement des approches conventionnelles de la fusion, telles que le tokamak et la fusion de microbilles par laser étant limitées, la plupart des propositions relatives à la fusion aneutronique sont basées sur des concepts de confinement radicalement différents.

Dans la plupart des plasmas, l'un des défis les plus importants à relever concerne les pertes liées à l'émission de photons (rayons X) par Bremsstrahlung, ou rayonnement de freinage. Pour la réaction p-11B, l’énergie de Bremsstrahlung serait toujours plus élevée que l’énergie de fusion, quelles que soient les proportions relatives des deux éléments ; le rapport correspondant pour la réaction 3He-3He serait un peu plus favorable. Ceci s'applique de façon différente aux plasmas anisotropes, et pas du tout aux plasmas non neutres.[réf. souhaitée]

Dans les réacteurs de fusion de conception traditionnelle, soit par confinement magnétique, soit par confinement inertiel, le Bremsstrahlung peut facilement s'échapper du plasma, et on le considère comme une perte d'énergie pure et simple. Les perspectives seraient plus favorables si les radiations pouvaient être réabsorbées par le plasma. L'absorption s'effectue principalement par diffusion Thomson des photons sur les électrons, dont la section efficace totale est σT = 6,65×10−29 m². Dans un mélange 50-50 de 2D-3T, cela correspond à environ 6,3 g/cm². Cette valeur plancher est considérablement plus élevée que le critère de Lawson ρR > 1 g/cm², qui est déjà difficile à atteindre, mais pourrait ne pas être hors de portée de systèmes de confinement inertiel futurs.

Dans des champs magnétiques très intenses, de l’ordre du mégatesla, un effet quantique pourrait supprimer le transfert d’énergie des ions vers les électrons. Selon un calcul, les pertes par Bremsstrahlung pourraient être réduites à la moitié de l’énergie de fusion, ou même moins. Dans un champ magnétique puissant, le rayonnement cyclotron est encore plus important que le Bremsstrahlung. Dans un champ mégatesla, un électron perdrait son énergie par rayonnement cyclotron en quelques picosecondes si la radiation pouvait s’échapper. Cependant, dans un plasma suffisamment dense, la fréquence cyclotron est inférieure au double de la fréquence du plasma. Dans ce cas bien connu, le rayonnement cyclotron est piégé à l’intérieur du plasmoïde et ne peut s’échapper, sauf à partir d’une très fine couche de surface.

Bien que des champs mégatesla n’aient pas encore été obtenus en laboratoire, des champs de 0,3 mégatesla ont été produits avec des lasers de haute intensité, et des champs de 0,02-0,04 mégatesla ont été observés dans le dispositif « dense plasma focus ».

À des densités beaucoup plus élevées (ne > 6,7×1034 m−3), les électrons se retrouvent dans un état de dégénérescence quantique dans lequel les pertes par Bremsstrahlung disparaissent, à la fois directement et par réduction du transfert d'énergie des ions vers les électrons. Si les conditions nécessaires pouvaient être atteintes, cela ouvrirait la possibilité d'une production nette d'énergie à partir de réactions p+-11B ou 2D-3He. La faisabilité d'un réacteur basé uniquement sur cet effet reste cependant faible, les valeurs prévisibles de gain (en) étant inférieures à 20, alors qu'on estime habituellement qu'un gain supérieur à 200 est nécessaire. Il existe cependant des effets qui pourraient améliorer substantiellement le gain.[réf. souhaitée]

Page générée en 0.114 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise