Un tokamak est une chambre de confinement magnétique destinée à contrôler un plasma pour étudier la possibilité de la production d'énergie par fusion nucléaire.
C'est une technologie de recherche expérimentale qui est, avec le confinement inertiel par laser, candidate pour permettre à long terme la production d'électricité en récupérant la chaleur qui serait produite par la réaction de fusion nucléaire.
Inventé au début des années 1950 par les Russes Igor Tamm et Andreï Sakharov, le terme tokamak vient du russe « тороидальная камера с магнитными катушками » (toroïdalnaïa kamera s magnitnymi katushkami : en français, chambre toroïdale avec bobines magnétiques). On rencontre – plus rarement – la graphie tokomak.
La fusion nucléaire permet à partir de deux atomes très légers (par exemple le deutérium et le tritium) de créer des atomes plus lourds. Cette transformation produit un défaut de masse qui se manifeste sous forme d'énergie ('E=mc2 où E est l'énergie produite en joules, m la masse disparue en kg, et c la célérité de la lumière dans le vide, en m.s-¹). Cet excès d'énergie pourrait se transformer en excès de chaleur, qui par convection pourrait être convertie en électricité au moyen d'une turbine à vapeur couplée à un alternateur.
Si une telle technologie parvenait à être mise au point, ses avantages seraient variés :
Pour produire une réaction de fusion nucléaire, il faut chauffer la matière à de très hautes températures (plusieurs dizaines de millions de degrés). Dans ces conditions, les électrons se détachent complètement de leur noyau — on dit que l'atome s'ionise. La matière entre alors dans un nouvel état : l'état de plasma.
Afin d'obtenir de telles températures, plusieurs méthodes ont été expérimentées :
Dans les réacteurs à fusion du futur, la température nécessaire pourrait être obtenue par une combinaison de ces méthodes.
L'enjeu consiste à contrôler le plasma au cœur du tokamak dans un volume limité et suffisamment éloigné des équipements. Comme le plasma est constitué de particules chargées, on peut confiner leur trajectoire de déplacement à l'intérieur d'un tore au moyen de champs magnétiques. Pour cela on doit créer un champ toroïdal auquel on associe une composante de champ qui lui est perpendiculaire (champ poloïdal). Dans les dispositifs du type Tokamak, le champ poloïdal est créé par un fort courant induit au sein même du plasma.
Ce dispositif se distingue des Stellarators, qui adoptent la même configuration de chambre à fusion de forme torique, mais au sein desquels aucun courant ne circule dans le plasma.
On constate qu'il est nécessaire de fournir une énergie initiale pour garantir les conditions de maintien de la réaction (température et confinement). En principe, plus on injecte de combustible, plus l'énergie thermique produite est importante.
Si la température produite était égale à celle demandée par la réaction, il ne serait plus nécessaire de réchauffer le combustible par des moyens extérieurs, on aurait alors atteint le seuil d'ignition de la réaction.
Ainsi pour un tel générateur, si le rapport de l'énergie produite par rapport à l'énergie fournie de façon extérieure arrivait à l'équilibre (autant d'énergie produite que d'énergie nécessaire au maintien de la réaction), on parlerait de breakeven. Ce générateur serait alors autonome sur un plan énergétique. Au-delà de ce seuil, tout surplus de combustible produirait un surplus d'énergie au bénéfice de l'exploitant.