Bibliographie
- Les œuvres d'Euclide, traduction de F. Peyrard, Paris (1819), nouveau tirage par Jean Itard, Éditions Albert Blanchard (1993)
- Euclide, Les Éléments, traduction, commentaires et notes de Bernard Vitrac
Les propositions
Ces propositions traitent des points suivants :
- Constructions élémentaires. Les trois premières propositions décrivent quelques constructions élémentaires : construction d'un triangle équilatéral de côté donné (prop.1), construction d'un cercle de centre donné et de rayon donné (prop.2), retrancher d'un segment AB donné un segment donné (prop.3)
- Les cas d'égalité des triangles sont traités dans les prop.4 (premier cas d'égalité des triangles : deux côtés et l'angle compris entre ces deux côtés, égaux dans les deux triangles), prop.7 et 8 (deuxième cas d'égalité des triangles : trois côtés de même longueur dans les deux triangles), prop.26 (troisième cas d'égalité des triangles : deux angles et un côté égaux).
- Le triangle isocèle : les prop.5 et 6 montrent qu'un triangle a deux côtés égaux si et seulement si il a deux angles égaux.
- Constructions diverses. Un certain nombre de propositions exposent comment procéder à la construction d'objets géométrique : la bissectrice d'un angle (prop.9), le milieu d'un segment (prop.10), la perpendiculaire à une droite passant par un point donné, un triangle dont les longueurs des côtés sont données (prop.22), un angle égal à un angle donné (prop.23).
- Les angles. Les propositions 13 à 19 traitent des angles, par exemple : deux angles d'un triangle sont moindres que deux droits (prop.17) ; dans un triangle, un plus grand côté est opposé à un plus grand angle (prop.18) ; deux triangles ayant deux côtés égaux, la base de l'un est plus grand que la base de l'autre si et seulement si l'angle au sommet du premier est plus grand que l'angle au sommet de l'autre (prop.24 et 25).
Ces 26 premières propositions ne font pas appel au cinquième postulat d'Euclide sur les parallèles. Il n'en est pas de même des propositions qui suivent et qui utilisent ce postulat.
- Propriétés des parallèles. Si une droite tombant sur deux droites fait des angles alternes égaux entre eux, ces deux droites seront parallèles (prop.27 et 28), et réciproquement, une droite tombant sur deux parallèles fait les angles alternes égaux entre eux (prop.29). Les droites parallèles à une même droite sont parallèles entre elles (prop.30). La prop.31 expose comment construire une parallèle à une droite donnée passant par un point donné.
- Somme des angles d'un triangle. C'est dans la prop.32 qu'on prouve que la somme des angles d'un triangle est égal à deux droits.
- Propriétés du parallélogramme. Les segments joignant les sommets de deux segments parallèles et de même longueur sont eux-mêmes parallèles et de même longueur (prop.33) ; les côtés et les angles opposés d'un parallélogramme sont égaux entre eux et une diagonale le partage en deux parties égales (prop.34) ; deux parallélogrammes, construits sur des bases de même longueur et entre les mêmes parallèles, ont même aire (prop.35 et 36). Les propositions 42 à 45 expliquent comment construire un parallélogramme d'aire égale à celle d'un triangle donné, ou d'aire égale à celle d'un polygone donné.
- Propriétés des triangles. Deux triangles de même base ont même aire si et seulement si ils ont même hauteur (prop.37 à 40). Cette aire est la moitié de celle du parallélogramme correspondant (prop.41).
- Construction d'un carré. Elle est donnée par la prop.46.