Méthode de Sotta - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Compléments

Ce paragraphe examine plus en détail, pour n > 3, le cas où la résolvante n'est pas du second degré. C'est-à-dire si :

 2na_na_{n-2}-(n-1)a_{n-1}^2 = 0 ~

En fait, cette condition entraîne que tous les coefficients de l'équation résolvante sont nuls.

Nous avons alors deux possibilités.

Premier cas : Tous les coefficients de l'équation à résoudre ne sont pas nuls.

Alors l'équation à résoudre se met sous la forme :

 (ax + b)^n = c ~

Et l'on en déduit les n racines :

 x_k = \frac{1}{a}\left(e^{\frac{2ki\pi}{n}}\sqrt[n]{c} - b \right) ~

Avec k prenant successivement toutes les valeurs entières de 0 à n-1


Deuxième cas : Certains coefficients de l'équation à résoudre sont nuls.

La méthode ne permet pas, en général, d'aboutir.

L'équation peut même être non résoluble par radicaux comme c'est le cas des équations du type :

 ax^5 + bx + c = 0 ~

Dont on démontre qu'elles ne sont pas en général résolubles par radicaux pour b différent de 0.

Exemples

Les deux premiers exemples qui suivent ont été choisis de façon à ce que l'équation résolvante ait un discriminant sous forme de carré parfait afin de simplifier les calculs. Mais la méthode s'applique aussi bien lorsque le discriminant n'est pas un carré parfait, est négatif (Exemples 3 et 4), ou est un nombre complexe quelconque.

Exemple 1

Soit à résoudre l'équation :

 \qquad 6x^3 - 6x^2 + 12x + 7 = 0

La résolvante de Sotta est :

 \qquad 2X^2 + 5X - 3 = 0

qui a pour racine :

 \qquad \frac{b}{d} = \frac{1}{2} et \frac{c}{e} = -3

On peut choisir :

 \qquad b = 1, c = -3, d = 2, e = 1

d'où :

 \qquad a = e^3a_2+3ce^2a_3 = -60

 \qquad f = d^3a_2+3bd^2a_3 = 24

En posant :

 \qquad j = e^{\frac{2i\pi}{3}}

On obtient les trois racines suivantes :

 \qquad x_1 = \frac{\sqrt[3]{-60} - (-3)\sqrt[3]{24}}{2\sqrt[3]{-60} - \sqrt[3]{24}} = \frac{\sqrt[3]{5} - 3\sqrt[3]{2}}{2\sqrt[3]{5} + \sqrt[3]{2}}

 \qquad x_2 = \frac{j\sqrt[3]{-60} - (-3)\sqrt[3]{24}}{2j\sqrt[3]{-60} - \sqrt[3]{24}} = \frac{j\sqrt[3]{5} - 3\sqrt[3]{2}}{2j\sqrt[3]{5} + \sqrt[3]{2}}

 \qquad x_3 = \frac{j^2\sqrt[3]{-60} - (-3)\sqrt[3]{24}}{2j^2\sqrt[3]{-60} - \sqrt[3]{24}} = \frac{j^2\sqrt[3]{5} - 3\sqrt[3]{2}}{2j^2\sqrt[3]{5} + \sqrt[3]{2}}

Exemple 2

Soit à résoudre l'équation :

 \qquad 14x^5 - 36x^4 + 32x^3 - 24x^2 - 2x - 3 = 0

On a alors :

  •  \qquad a_5 = 14
  •  \qquad a_4 = -36
  •  \qquad a_3 = 32
  •  \qquad a_2 = -24
  •  \qquad a_1 = -2
  •  \qquad a_0 = -3

Pour savoir si l'équation est résoluble par la méthode de Sotta, nous devons vérifier les conditions de résolubilité.

 \qquad 10a_5a_2^2-20a_5a_3a_1+a_3^3-4a_4a_3a_2+8a_4^2a_1=10*14*24^2+20*14*32*2+32^3-4*36*32*24-8*36^2*2=0  \qquad 8a_4a_1^2-20a_4a_2a_0+a_2^3-4a_3a_2a_1+10a_3^2a_0=-8*36*2^2+20*36*24*3-24^3-4*32*24*2-10*32^2*3=0

La résolvante de Sotta est :

 \qquad 2X^2 + 3X - 2=0

qui a pour racine :

 \qquad \frac{b}{d} = \frac{1}{2} et \frac{c}{e} = -2

On peut choisir :

 \qquad b = 1, c = 2, d = 2, e = -1

d'où :

 \qquad a = e^5a_4+5ce^4a_5 = 176

 \qquad f = d^5a_4+5bd^4a_5 = -32

L'une des racines de l'équation sera :

 \qquad x_1 = \frac{\sqrt[5]{176} - 2\sqrt[5]{-32}}{2\sqrt[5]{176} - (-1)\sqrt[5]{-32}} = \frac{\sqrt[5]{11} + 2\sqrt[5]{2}}{2\sqrt[5]{11} - \sqrt[5]{2}}

On obtient alors les cinq racines suivantes :

 \qquad x_1 = \frac{\sqrt[5]{11} + 2\sqrt[5]{2}}{2\sqrt[5]{11} - \sqrt[5]{2}}

 \qquad x_2 = \frac{e^{\frac{2i\pi}{5}}\sqrt[5]{11} + 2\sqrt[5]{2}}{2e^{\frac{2i\pi}{5}}\sqrt[5]{11} - \sqrt[5]{2}}

 \qquad x_3 = \frac{e^{\frac{4i\pi}{5}}\sqrt[5]{11} + 2\sqrt[5]{2}}{2e^{\frac{4i\pi}{5}}\sqrt[5]{11} - \sqrt[5]{2}}

 \qquad x_4 = \frac{e^{\frac{6i\pi}{5}}\sqrt[5]{11} + 2\sqrt[5]{2}}{2e^{\frac{6i\pi}{5}}\sqrt[5]{11} - \sqrt[5]{2}}

 \qquad x_5 = \frac{e^{\frac{8i\pi}{5}}\sqrt[5]{11} + 2\sqrt[5]{2}}{2e^{\frac{8i\pi}{5}}\sqrt[5]{11} - \sqrt[5]{2}}

Exemple 3

Soit à résoudre l'équation :

 x^3 - 3(k + 1)x^2 + (3k^2 + 6k + 2)x - k(k^2 + 3k + 2) = 0 ~

Donc les coefficients dépendent d'un paramètre k.

La résolvante de Sotta est :

 3X^2 - 6(k + 1)X + 3k^2 + 6k + 4 = 0 ~

Donc le discriminant est :

 \Delta = -12 = (2i\sqrt{3})^2 ~

et qui a donc pour racine :

 \qquad \frac{b}{d} = \frac{3k + 3 + i \sqrt{3}}{3} et \frac{c}{e} = \frac{3k + 3 - i \sqrt{3}}{3}

On peut choisir :

 b = 3k + 3 + i \sqrt{3}, c = -3k - 3 + i \sqrt{3}, d = 3, e = -3 ~

d'où :

 a = e^3a_2+3ce^2a_3 = 27i\sqrt{3} ~

 f = d^3a_2+3bd^2a_3 = 27i\sqrt{3} ~

En posant :

 j = e^{\frac{2i\pi}{3}} ~

On obtient les trois racines suivantes :

 \left\{\begin{matrix} x_1 = \frac{(3k+3+i\sqrt{3})\sqrt[3]{27i\sqrt{3}} - (-3k-3+i\sqrt{3})\sqrt[3]{27i\sqrt{3}}}{3\sqrt[3]{27i\sqrt{3}} + 3\sqrt[3]{27i\sqrt{3}}} \\ x_2 = \frac{(3k+3+i\sqrt{3})j\sqrt[3]{27i\sqrt{3}} - (-3k-3+i\sqrt{3})\sqrt[3]{27i\sqrt{3}}}{3j\sqrt[3]{27i\sqrt{3}} + 3\sqrt[3]{27i\sqrt{3}}} \\ x_3 = \frac{(3k+3+i\sqrt{3})j^2\sqrt[3]{27i\sqrt{3}} - (-3k-3+i\sqrt{3})\sqrt[3]{27i\sqrt{3}}}{3j^2\sqrt[3]{27i\sqrt{3}} + 3\sqrt[3]{27i\sqrt{3}}} \end{matrix}\right.

En simplifiant le numérateur et le dénominateur de chaque fraction par :

 \sqrt[3]{27i\sqrt{3}}  ~

Et en remarquant que :

 j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i ~

On obtient :

 \left\{\begin{matrix} x_1 = \frac{(3k+3+i\sqrt{3}) - (-3k-3+i\sqrt{3})}{3 + 3} \\ x_2 = \frac{(3k+3+i\sqrt{3})(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) - (-3k-3+i\sqrt{3})}{3(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) + 3} \\ x_3 = \frac{(3k+3+i\sqrt{3})(-\frac{1}{2} - \frac{\sqrt{3}}{2}i) - (-3k-3+i\sqrt{3})}{3(-\frac{1}{2} - \frac{\sqrt{3}}{2}i) + 3} \end{matrix}\right.

En développant et en multipliant éventuellement le numérateur et le dénominateur de chaque fraction par 2, on obtient :

 \left\{\begin{matrix} x_1 = \frac{6k + 6}{6} \\ x_2 = \frac{3k + 3ki\sqrt{3}}{3 + 3i\sqrt{3}} \\ x_3 = \frac{3k + 6 - 6i\sqrt{3} - 3ki\sqrt{3}}{3 - 3ki\sqrt{3}} \end{matrix}\right.

En multipliant éventuellement le numérateur et le dénominateur de chaque fraction par l'expression conjuguée du dénominateur correspondant, on obtient finalement :

 \left\{\begin{matrix} x_1 = k + 1 \\ x_2 = k \\ x_3 = k + 2 \end{matrix}\right.

Exemple 4

Soit à résoudre l'équation :

 x^3 - 3x^2\sqrt{3} - 3x + \sqrt{3} = 0 ~

La résolvante de Sotta est :

 \qquad X^2 + 1 = 0

qui a pour racine :

 \qquad \frac{b}{d} = i et \frac{c}{e} = -i

On peut choisir :

 \qquad b = i, c = -i, d = 1, e = 1

d'où :

 \qquad a = e^3a_2+3ce^2a_3 = -3\sqrt{3} - 3i

 \qquad f = d^3a_2+3bd^2a_3 = -3\sqrt{3} + 3i

En posant :

 \qquad j = e^{\frac{2i\pi}{3}}

On obtient les trois racines suivantes :

 \left\{\begin{matrix} x_1 = \frac{i\sqrt[3]{-3\sqrt{3} - 3i} - (-i)\sqrt[3]{-3\sqrt{3} + 3i}}{\sqrt[3]{-3\sqrt{3} - 3i} - \sqrt[3]{-3\sqrt{3} + 3i}}  \\ x_2 = \frac{ij\sqrt[3]{-3\sqrt{3} - 3i} - (-i)\sqrt[3]{-3\sqrt{3} + 3i}}{j\sqrt[3]{-3\sqrt{3} - 3i} - \sqrt[3]{-3\sqrt{3} + 3i}} \\ x_3 = \frac{ij^2\sqrt[3]{-3\sqrt{3} - 3i} - (-i)\sqrt[3]{-3\sqrt{3} + 3i}}{j^2\sqrt[3]{-3\sqrt{3} - 3i} - \sqrt[3]{-3\sqrt{3} + 3i}} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{i\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} + i\sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}}{\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} - \sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}}  \\ x_2 = \frac{ij\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} + i\sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}}{j\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} - \sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}} \\ x_3 = \frac{ij^2\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} + i\sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}}{j^2\sqrt[3]{\frac{\sqrt{3}}{2} + \frac{1}{2}i} - \sqrt[3]{\frac{\sqrt{3}}{2} - \frac{1}{2}i}} \end{matrix}\right. ~

Comme :

 \frac{\sqrt{3}}{2} + \frac{1}{2}i = cos(\frac{\pi}{6}) + i.sin(\frac{\pi}{6}) = e^{\frac{i\pi}{6}} ~

 \frac{\sqrt{3}}{2} - \frac{1}{2}i = cos(-\frac{\pi}{6}) + i.sin(-\frac{\pi}{6}) = e^{-\frac{i\pi}{6}} ~

 j = e^{\frac{2i\pi}{3}} ~


 j^2 = e^{\frac{-2i\pi}{3}} ~

On obtient :

 \left\{\begin{matrix} x_1 = \frac{i\sqrt[3]{e^{\frac{i\pi}{6}}} + i\sqrt[3]{e^{-\frac{i\pi}{6}}}}{\sqrt[3]{e^{\frac{i\pi}{6}}} - \sqrt[3]{e^{-\frac{i\pi}{6}}}}  \\ x_2 = \frac{i.e^{\frac{2i\pi}{3}}\sqrt[3]{e^{\frac{i\pi}{6}}} + i\sqrt[3]{e^{-\frac{i\pi}{6}}}}{e^{\frac{2i\pi}{3}}\sqrt[3]{e^{\frac{i\pi}{6}}} - \sqrt[3]{e^{-\frac{i\pi}{6}}}} \\ x_3 = \frac{i.e^{\frac{-2i\pi}{3}}\sqrt[3]{e^{\frac{i\pi}{6}}} + i\sqrt[3]{e^{-\frac{i\pi}{6}}}}{e^{\frac{-2i\pi}{3}}\sqrt[3]{e^{\frac{i\pi}{6}}} - \sqrt[3]{e^{-\frac{i\pi}{6}}}} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{ie^{\frac{i\pi}{18}} + ie^{-\frac{i\pi}{18}}}{e^{\frac{i\pi}{18}} - e^{-\frac{i\pi}{18}}}  \\ x_2 = \frac{i.e^{\frac{13i\pi}{18}} + ie^{-\frac{i\pi}{18}}}{e^{\frac{13i\pi}{18}} - e^{-\frac{i\pi}{18}}} \\ x_3 = \frac{ie^{\frac{-11i\pi}{18}} + ie^{-\frac{i\pi}{18}}}{e^{\frac{-11i\pi}{18}} - e^{-\frac{i\pi}{18}}} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{i(e^{\frac{i\pi}{18}} + e^{-\frac{i\pi}{18}})}{e^{\frac{i\pi}{18}} - e^{-\frac{i\pi}{18}}}  \\ x_2 = \frac{i(e^{\frac{13i\pi}{18}} + e^{-\frac{i\pi}{18}})e^{\frac{-6i\pi}{18}}}{(e^{\frac{13i\pi}{18}} - e^{-\frac{i\pi}{18}})e^{\frac{-6i\pi}{18}}} \\ x_3 = \frac{i(e^{\frac{-11i\pi}{18}} + e^{-\frac{i\pi}{18}})e^{\frac{6i\pi}{18}}}{(e^{\frac{-11i\pi}{18}} - e^{-\frac{i\pi}{18}})e^{\frac{6i\pi}{18}}} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{i(e^{\frac{i\pi}{18}} + e^{-\frac{i\pi}{18}})}{e^{\frac{i\pi}{18}} - e^{-\frac{i\pi}{18}}}  \\ x_2 = \frac{i(e^{\frac{7i\pi}{18}} + e^{\frac{-7i\pi}{18}})}{e^{\frac{7i\pi}{18}} - e^{\frac{-7i\pi}{18}}} \\ x_3 = \frac{i(e^{\frac{-5i\pi}{18}} + e^{\frac{5i\pi}{18}})}{e^{\frac{-5i\pi}{18}} - e^{\frac{5i\pi}{18}}} \end{matrix}\right. ~

Compte tenue des formules d'Euler :

\cos x = {e^{ix} + e^{-ix} \over 2} ~

\sin x = {e^{ix} - e^{-ix} \over 2i} ~

On obtient :

 \left\{\begin{matrix} x_1 = \frac{i.2cos( \frac{\pi}{18} )}{2isin(\frac{\pi}{18})}  \\ x_2 = \frac{i.2cos( \frac{7\pi}{18} )}{2isin(\frac{7\pi}{18})} \\ x_3 = \frac{i.2cos( \frac{5\pi}{18} )}{-2isin(\frac{5\pi}{18})} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{sin( \frac{\pi}{2} - \frac{\pi}{18} )}{cos(\frac{\pi}{2} - \frac{\pi}{18})}  \\ x_2 = \frac{sin(\frac{\pi}{2} -  \frac{7\pi}{18} )}{cos(\frac{\pi}{2} - \frac{7\pi}{18})} \\ x_3 = \frac{sin(\frac{\pi}{2} +  \frac{5\pi}{18} )}{cos(\frac{\pi}{2} + \frac{5\pi}{18})} \end{matrix}\right. \Longrightarrow  \left\{\begin{matrix} x_1 = \frac{sin(\frac{4\pi}{9} )}{cos(\frac{4\pi}{9})}  \\ x_2 = \frac{sin(\frac{\pi}{9} )}{cos(\frac{\pi}{9})} \\ x_3 = \frac{sin(\frac{7\pi}{9} )}{cos(\frac{7\pi}{9})} \end{matrix}\right. ~

On obtient donc finalement :

 \left\{\begin{matrix} x_1 = tan(\frac{4\pi}{9})  \\ x_2 = tan(\frac{\pi}{9}) \\ x_3 = tan(\frac{7\pi}{9}) \end{matrix}\right. ~

Page générée en 0.138 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise