Neutrino - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Neutrinos
Propriétés générales
Classification Leptons
Composition élémentaires
Propriétés physiques
Masse • νe : < 2,5 eV.c-2

• νμ : < 170 keV.c-2
• ντ : < 18 MeV.c-2

Charge électrique 0
Spin ½
Durée de vie Stable

Le neutrino est une particule élémentaire du modèle standard de la physique des particules. C’est un fermion de spin ½.

Longtemps sa masse fut supposée nulle. Toutefois, des expériences réalisées en 1998 au Super-Kamiokande ont montré que celle-ci, bien que très petite, est différente de zéro.

L’existence du neutrino a été postulée pour la première fois par Wolfgang Pauli pour expliquer le spectre continu de la désintégration bêta ainsi que l’apparente non-conservation du moment cinétique.

Histoire

En 1930, confronté au problème du spectre en énergie de la désintégration β, Wolfgang Ernst Pauli invente le neutrino pour satisfaire le principe de conservation de l’énergie. Enrico Fermi lui donne le nom de neutrino en 1933 en l’incorporant dans sa théorie de l’interaction faible. Le neutrino est découvert expérimentalement en 1956, (c’est en fait l’antineutrino électronique, \overline{\nu_e} qui accompagne la formation d’un électron (conservation du nombre leptonique) lors de la transformation d’un neutron en proton) par Frederick Reines et Clyde Cowan auprès d’un réacteur nucléaire. En 1962, le neutrino muonique (νμ) est découvert à Brookhaven. En 1990, le LEP, au CERN, démontre qu’il n’y a que trois familles de neutrinos. Le neutrino tau (ντ) est découvert en 2000 dans l’expérience DONUT.

Types de détecteurs de neutrinos

Il y a plusieurs types de détecteurs de neutrinos. Leur principal point commun est d’être composé d’une grande quantité de matériel, étant donnée la faible section efficace d’interaction des neutrinos. Ils sont également généralement situés profondément sous terre ou sous la mer, afin de s’affranchir du bruit de fond occasionné par le rayonnement cosmique. On distingue notamment :

  • Les détecteurs au chlore furent les premiers employés et se composent d’un réservoir rempli de tétrachlorure de carbone (CCl). Dans ces détecteurs, un neutrino convertit un atome de chlore en un atome d’argon. Le fluide doit être purgé périodiquement avec du gaz hélium qui enlève l’argon. L’hélium doit alors être refroidi pour le séparer de l’argon. Ces détecteurs avaient le désavantage majeur de ne pas déterminer la direction du neutrino entrant. C’est le détecteur au chlore de Homestake, dans le Dakota du Sud, contenant 520 tonnes de liquide, qui détecta la première fois le déficit des neutrinos provenant du Soleil et qui permit de découvrir le problème des neutrinos solaires.
  • Les détecteurs au gallium sont semblables aux détecteurs au chlore mais sont plus sensibles aux neutrinos de faible énergie. Dans ces détecteurs, un neutrino convertit le gallium en germanium qui peut alors être détecté chimiquement. Ce type de détecteur ne fournit pas non plus d’information sur la direction du neutrino.
  • Les détecteurs à eau ordinaire, ou détecteur Čerenkov, tels que Super-Kamiokande. Ils sont constitués d’un grand réservoir d’eau pure entouré par des détecteurs très sensibles à la lumière, des tubes photomultiplicateurs. Dans ces détecteurs, un neutrino transfère son énergie à un lepton chargé, qui se déplace alors plus rapidement que la lumière dans ce milieu, ce qui engendre, par effet Čerenkov, une production de lumière caractéristique permettant de remonter à la trajectoire initiale de la particule. Les avantages de ce type de détecteur sont de détecter à la fois la direction du neutrino, sa saveur et son énergie. Il autorise également un large volume de détection pour un coût minime, ce qui permet d’augmenter significativement le nombre de neutrinos détectés. C’est ce type de détecteur qui a enregistré le « sursaut » de neutrinos de la supernova 1987a.
  • Les détecteurs à eau lourde emploient trois types de réactions pour détecter les neutrinos : la même réaction que les détecteurs à eau légère, une réaction impliquant la collision d’un neutrino avec le neutron d’un noyau de deutérium, ce qui libère un électron, et une troisième réaction dans laquelle le neutrino casse un noyau de deutérium en proton et neutron sans lui-même changer de nature. Les résultats de ces réactions peuvent être détectés par des tubes photomultiplicateurs et des détecteurs de neutrons. Ce type de détecteur est en fonction dans l’observatoire de neutrinos de Sudbury.
  • Les détecteurs à liquide scintillant, tels ceux des expériences Double Chooz et Kamland, permettent de détecter des neutrinos d’énergie de l’ordre du MeV. Ils sont en général pour cette raison utilisés pour détecter les neutrinos en provenance de centrales nucléaires. Le liquide scintillant permet de détecter très précisément l’énergie du neutrino, mais ne donne pas d’information quant à sa direction.
  • Le détecteur à film photographique OPERA (en), installé dans le tunnel du Gran Sasso en Italie, détecte les neutrinos émis par un faisceau généré au CERN par une technique originale : des couches photographiques sont alternées avec des feuilles de plomb, afin de détecter l’oscillation du neutrino muonique en neutrino tauique. Le développement des films photographiques permet de reconstruire la topologie de l’interaction, afin d’identifier le tau issu de l’interaction du neutrino tauique.
  • Les détecteurs de double désintégration bêta : ils permettent de détecter le spectre de la double désintégration béta avec émission de 2 neutrinos, afin de chercher l’existence d’une double désintégration bêta sans émission de neutrinos, ce qui prouverait que le neutrino et l’anti-neutrino sont une seule et même particule (neutrino de Majorana, par opposition au neutrino classique, de Dirac). Ils sont de deux types : calorimétrique tels GERDA et CUORE, ils détectent seulement l’énergie totale de la double désintégration bêta pour reconstruire fidèlement le spectre d’énergie ; trajectographe-calorimètre pour l’expérience NEMO3 et le projet SuperNEMO, qui détectent le spectre en énergie et la trajectoire des deux électrons afin de rejeter le plus de bruit de fond possible.
Page générée en 0.182 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise