Hydrogène-2 | |
---|---|
Général | |
Nom, Symbole | deutérium, 2H |
Neutrons | 1 |
Protons | 1 |
Données Physiques | |
Présence naturelle | 0,015 % |
Demi-vie | Stable |
Produit de désintégration | Aucun |
Masse atomique | 2,014101777(99) uma u |
Spin | 1+ |
Excès d'énergie | 13135,7196 ± 0,001 keV |
Énergie de liaison | 2224,573 ± 0,002 keV |
Désintégration | Énergie (MeV) |
Le deutérium (symbole 2H ou D) est un isotope naturel de l'hydrogène. Son noyau atomique possède un proton et un neutron, d'où un nombre de masse égal à 2. Le deutérium a été découvert en 1931 par Harold Clayton Urey, un chimiste de l'université Columbia, découverte qui lui valut le prix Nobel de chimie en 1934.
L'UICPA recommande de représenter le deutérium par le symbole 2H afin de préserver l'homogénéité de ses dénominations, mais tolère le symbole D, qui est largement utilisé. La raison de cette tolérance serait à chercher dans le fait que, de tous les éléments chimiques, l'hydrogène est celui pour lequel les isotopes ont des différences de masse relatives les plus élevées, ce qui n'est pas sans conséquences sur leurs propriétés physicochimiques respectives : la masse atomique du protium 1H est de 1,00782503214 u alors que celle du deutérium 2H est de 2,01410177799 u.
Le deutérium existe naturellement à l'état de traces (typiquement 0,015 % par rapport au protium), éventuellement sous forme de dideutérium D2, mais sa forme la plus fréquente dans l'univers est de loin le deutérure d'hydrogène HD, dans lequel un atome de deutérium est lié à un atome de protium.
La présence de deutérium sur Terre, dans le reste du système solaire et dans le spectre des étoiles, est une donnée importante de la cosmologie physique, car les noyaux 2H ne peuvent s'être formés aux abondances observées que lors de la nucléosynthèse primordiale. La présence d'une fraction, faible mais constante, de deutérium partout où l'on trouve de l'hydrogène, est un argument en faveur de la théorie du Big Bang par rapport à la théorie de l'état stationnaire : on pense que l'abondance relative du deutérium par rapport à l'hydrogène est demeurée essentiellement constante depuis la nucléosynthèse primordiale, il y a 13,7 milliards d'années.
Le principal « producteur » de deutérium (par enrichissement ou concentration de deutérium utilisé dans l'eau lourde comme absorbeur de neutrons dans certains types de réacteurs nucléaires) était le Canada jusqu'en 1997, date de la fermeture de sa dernière usine ; depuis, l'Inde aurait pris le relais, également dans le cadre de son industrie nucléaire.
Par rapport au protium, le deutérium se montre légèrement plus visqueux et, du point de vue chimique, présente un effet isotopique significatif : il est un peu moins réactif que le protium, et forme des liaisons (liaison covalente et liaison hydrogène) légèrement plus fortes. Absorber de l'eau lourde plutôt que de l'eau naturelle n'est pas sans conséquences sur l'organisme, des expériences sur des animaux de laboratoire indiquant que les effets les plus notables se manifestent en premier au niveau des cellules à division rapide, en affectant les mitoses et accélérant ainsi la dégradation des tissus (cf. l'article « eau lourde »).
Des problèmes digestifs commencent à surgir chez les animaux avec un taux de remplacement physiologique de l'ordre de 25 %, ainsi que des problèmes de stérilité dus au fait que les méioses sont bloquées autant que les mitoses. On a observé que, dans ces conditions, les plantes cessent de croître et que les graines cessent de germer. A un taux de deutération voisin de 50 %, les eucaryotes sont atteints de lésions létales (chez les animaux, défaillances graves au niveau de l'intestin et des os, notamment) tandis que les procaryotes survivent dans l'eau lourde pure, affectés semble-t-il simplement par une croissance ralentie.