Quand commence la mathématique ? Difficile de répondre précisément. Tout dépend du sens du terme « mathématique ».
La mathématique dans une acception très large est un ensemble de concepts et de méthodologie. Les mathématiques commencent donc avec le dénombrement. Ce savoir est antérieur à l'écriture. Des entailles sur des os préfigurent des calendriers lunaires, à l'instar de l'os d'Ishango. L'utilisation des nombres était effective dès les premières civilisations (Mésopotamie, IVe millénaire).
Toutefois, si on limite les mathématiques à une connaissance scientifique reposant sur des raisonnements vérifiables, les premières mathématiques datent de la civilisation grecque.
Une troisième école date les débuts des mathématiques avec le renouveau culturel en Europe à la Renaissance.
Ces différends sur les origines mathématiques portent davantage sur la définition de cette science que sur l'authenticité des preuves historiques.
L'universalité manifeste des mathématiques et leur efficacité sont, au moins depuis l'antiquité grecque, la source de questions philosophiques et métaphysiques. L'histoire des idées est intimement liée à la réflexion sur la nature des mathématiques. On peut distinguer trois grandes questions principales :
Le développement d'autres disciplines (sciences cognitives, philosophie de l'esprit, ...) soulève d'autres questions du type:
«Que nul n'entre ici s'il n'est géomètre», était-il gravé sur le portail de l'Académie, école de Platon. Pour ce philosophe, les mathématiques sont un intermédiaire pour accéder au royaume des Idées.
Concernant les mathématiques, Aristote est encore très empreint de platonisme. L'univers au-delà de la Lune, les étoiles et les planètes, peuvent être compris par les mathématiques, car ils sont ordonnés suivant des lois éternelles et parfaites. En revanche, pour Aristote le monde sublunaire est sujet au changement et au mouvement, et la physique ne peut en aucun cas prétendre acquérir la rigueur et l'universalité des mathématiques.
Le logicisme considère que les mathématiques sont toutes entières incluses dans l'ensemble des connexions logiques élémentaires, théoriquement explicitables, qui composent une démonstration.
«La possibilité même de la science mathématique semble une contradiction insoluble. Si cette science n'est déductive qu'en apparence, d'où lui vient cette parfaite rigueur que personne ne songe à mettre en doute ? Si, au contraire, toutes les propositions qu'elle énonce peuvent se tirer les unes des autres par les règles de la logique formelle, comment la mathématique ne se réduit-elle pas à une immense tautologie ? Le syllogisme ne peut rien nous apprendre d'essentiellement nouveau et, si tout devait sortir du principe d'identité, tout devrait aussi pouvoir s'y ramener. », Henri Poincaré, La Science et l'hypothèse
Pour Albert Lautman, le monde des idées mathématiques est le parangon du monde des Idées platoniciennes. Plus précisément, il considère que les relations entre les objets mathématiques mises en évidence dans les démonstrations sont des relations plus générales, métamathématiques. Dans ses ouvrages, Lautman montre que dans le déroulement d'une démonstration d'un théorème, des idées développées par des philosophes dans un tout autre contexte sont réalisées.
Les constructivistes n'admettent que les mathématiques construites. Plus techniquement, ils n'acceptent dans les démonstrations que les inférences finies. Par exemple, le raisonnement par récurrence ainsi que l'axiome du choix sont prohibés. Les démonstrations par l'absurde sont également interdites, puisqu'elles ne donnent l'existence de l'être mathématique que par l'impossibilité de son non-être, et non pas par l'explicitation concrète de son existence.
Les calculationnistes sont ceux qui comme Stephen Wolfram identifient la nature au calcul. Pour eux, une pomme qui tombe est une instantiation du calcul de la mécanique.