Les effets indirects du PTFE est le fait qu’il peut produire des gaz à effet de serre dans l’atmosphère lorsque chauffé. En effet à 600 °C il y a production de PFB (polyfluorobutène) et à 650 °C de tétrafluorure de carbone (CF4). Ces dernières possèdent un lien covalent qui est polarisé, absorbant la lumière qui est réflectée du soleil (parmi 30 % de la lumière qui est reflétée, 15 % est absorbée par les gaz à effet de serre par les vibrations de cisaillement de la molécule).
Le problème du CF4 et du PFB est que ces molécules possèdent un temps de vie très élevé (par exemple 50 000 ans pour le CF4) et une puissance relative de réchauffement de la planète par kilo intégré pour 100 ans de 6 500. Si on comparait à ce que contribue le CO2, il possèderait un temps de vie 1 000 fois plus long. Il faudra aussi noter que le taux de croissance annuelle augmente de 2 % pour le CF4 comparativement au CO2 qui est de l’ordre de 0,4 %.
Problème : l'usage des chlorofluorocarbures (CFC) ayant été banni il y a quelques années, ceux-ci ont été remplacés par d’autres contribuants (par exemple CF4) non moins puissants en potentiel de réchauffement et possédant cette fois-ci un temps de résidence 500 fois plus long. Non seulement la dégradation à haute température du PTFE se fait ressentir dans le réchauffement de la planète, mais il se fait aussi ressentir dans les eaux souterraines, lacs, la mer et chez les animaux. En fait la plus haute concentration qui se fait ressentir parmi les PFC (composés perfluorés) est celle du PFOA.
Le PFOA fait partie des POP (polluants organiques persistants) donc ne se décompose pas ou peu dans la nature. Le PFOA a été retrouvé au pôle chez les ours polaires, poissons, chez l’humain et dans tous les océans du monde. Le PFOA est bioaccumulable et bioamplifiable.
Récemment des études permettant la dégradation du PFOA sont en vigueur dans le monde. En fait les études montrent la dégradation du PFOA en présence de Fe(III) et sous lumière UV à 254 nm. Ainsi des analyses chimiques liées à la production du PTFE seraient de plus en plus demandées dans le monde. Et donc, le domaine de la chimie environnementale analytique serait en plein essor.
Une blague tirée d'un sketch : « Selon la pub : rien n'adhère au Téflon ! Comment font-ils pour accrocher le Téflon aux poêles ? »
La solution : Comme le Téflon ne colle pas naturellement au métal, les premières poêles antiadhésives étaient plutôt fragiles et il fallait utiliser des ustensiles spéciaux pour ne pas égratigner le revêtement. La technique s'est grandement améliorée depuis. Les procédés de fabrication sont secrets mais quelques idées circulent : une des possibilités serait qu'on sable d'abord le fond de la poêle afin de le rendre rugueux. Ensuite, on enduit la surface d'un apprêt spécial. Finalement, on applique le Téflon sur l'apprêt. Même si le Téflon ne se combine pas chimiquement au métal, il est tout de même possible de le faire adhérer mécaniquement, c'est-à-dire en faisant en sorte qu'il s'introduise et s'agrippe dans les petites fentes et crevasses à la surface de la poêle.
Une alternative: On dépose des polymères en plusieurs couches sur le métal. On commence par un polymère qui adhère bien au métal et qui ressemble vaguement au Téflon. La seconde couche est un autre polymère qui adhère au polymère de la couche précédente, mais qui ressemble plus au Téflon. On fait ces applications jusqu'à ce que l'on applique le Téflon.