Spire de courant
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En électromagnétisme, on appelle spire de courant un circuit électrique fermé parcouru par un courant électrique. Le circuit le plus simple étant un cercle (aussi appelé boucle) pour lequel le mouvement d'ensemble des électrons est circulaire. En pratique, une telle spire peut être obtenue avec un fil électrique (Un fil électrique, ou câble électrique est un organe fait d'un matériaux conducteur servant au transport de l'électricité. Il peut être mono-brin ou multi-brin, entouré ou non d'une enveloppe isolante (plastique, téflon, etc.) ...) en forme de cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance...) alimenté par une pile électrique (Une pile électrique (ou plus simplement pile) est un dispositif électrochimique transformant l'énergie d'une réaction chimique en énergie électrique. Dans une pile...). Un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) de spires de courant disposées côte à côte constitue une bobine électrique ou solénoïde. On peut aussi considérer que le mouvement d'un électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un des...) autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres...) d'un atome (Un atome (grec ancien ἄτομος [atomos], « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une...) est circulaire[1], et correspond donc, de manière imagée, à une spire de courant (En électromagnétisme, on appelle spire de courant un circuit électrique fermé parcouru par un courant électrique. Le circuit le plus simple étant un cercle (aussi appelé boucle) pour lequel le mouvement d'ensemble des électrons est...).

Propriétés générales

  • Lorsque le fil électrique qui la constitue est traversé par un courant électrique (Un courant électrique est un déplacement d'ensemble de porteurs de charge électrique, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par...), une spire de courant produit un champ magnétique (En physique, le champ magnétique (ou induction magnétique, ou densité de flux magnétique) est une grandeur caractérisée par la donnée d'une intensité et d'une direction,...), c'est la base de l'électroaimant (Un électro-aimant est un organe électrotechnique produisant un champ électromagnétique lorsqu'il est alimenté en électricité. Il est constitué d'un bobinage et souvent d'une...).
  • Lorsqu'une spire de courant est placée dans un champ (Un champ correspond à une notion d'espace défini:) magnétique variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule,...), un courant électrique est induit (L'induit est un organe généralement électromagnétique utilisé en électrotechnique chargé de recevoir l'induction de l'inducteur et de la transformer en électricité (générateur) ou en force...) dans la spire selon la Loi de Lenz (La loi de Lenz (ou loi de Lenz-Faraday) sert en électromagnétisme et permet de déterminer le sens du courant induit. Elle peut s'énoncer comme suit :...).
  • Lorsqu'une spire de courant est parcourue par un courant électrique et placée dans un champ magnétique, elle s'oriente par l'effet de la force de Laplace (La force de Laplace est une force qui s'exerce sur un fil conducteur () dans lequel passe un courant électrique (I), dans un champ magnétique (). Son expression est :) de façon à maximiser le flux (Le mot flux (du latin fluxus, écoulement) désigne en général un ensemble d'éléments (informations / données, énergie, matière, ...) évoluant dans un sens commun. Plus précisément le terme est employé...) qui la traverse (Une traverse est un élément fondamental de la voie ferrée. C'est une pièce posée en travers de la voie, sous les rails, pour en maintenir l'écartement et l'inclinaison, et transmettre au...).

Calcul du champ magnétique

L'effet principal d'une spire de courant est de créer dans son voisinage (La notion de voisinage correspond à une approche axiomatique équivalente à celle de la topologie. La topologie traite plus naturellement les notions globales comme la continuité qui s'entend ici comme la continuité en tout point. En...) un champ magnétique de forme relativement complexe. Toutefois, comme de nombreux phénomènes physiques font intervenir ce type de spires, il est intéressant de le connaître. Par exemple, il permet de calculer les champs magnétiques créés dans un solénoïde ou dans des bobines d'Helmholtz, ou encore de comprendre la notion de dipôle (D'une manière générale, le mot dipôle désigne une entité qui possède deux pôles. On le retrouve dans plusieurs domaines :) magnétique. Dans tous les cas, le phénomène n'est jamais parfaitement circulaire : il est modélisé par la notion de spire circulaire de courant.

On note R le rayon de la spire et I le courant la parcourant. On cherche à calculer le champ magnétique \vec B(M) créé au point (Graphie) M.

Cas d'un courant constant

En supposant que le courant I ne varie pas dans le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.), le problème vérifie alors les lois de la magnétostatique (La magnétostatique est l'étude des phénomènes où le champ magnétique est statique, c’est-à-dire ne dépend pas du temps.). On peut alors expliciter une propriété générale : les antisymétries du système permettent de montrer que le champ \vec B n'a pas de composantes selon l'axe \vec e_\theta; en effet tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) plan contenant l'axe Oz est un plan d'antisymétrie du courant et le champ résultant est donc contenu dans ce plan pour tout point M de ce plan. Dans un repère à coordonnées cylindriques (\vec e_r, \vec e_\theta, \vec e_z), cela se traduit par l'écriture suivante :

\vec B(r,\theta,z)= B_r(r,z)\vec e_r + B_z(r,z) \vec e_z.

L'axe Oz étant l'intersection des plans d'antisymétrie le champs pour M sur Oz est dirigé suivant Oz axe de la spire.

Champ au centre O de la spire

La loi de Biot et Savart est relativement simple à appliquer au centre O de la spire. En effet, il suffit de sommer la contribution \vec{dB} de chaque petit élément de longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet complètement...) \vec{dl} de la spire :

\vec{dB} = \frac{\mu_o}{4 \pi R^2} I dl \vec e_z

μ0 est la perméabilité magnétique du vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.).

En faisant la somme de chacune de ces contributions, on obtient :

\vec B(O) = \frac{\mu_0 I}{2R} \vec e_z.

On peut remarquer que ce champ, comme on aurait put le prévoir, augmente lorsqu'on élève la valeur du courant et lorsque le rayon de la spire diminue.

Par exemple, pour un courant de 0,1 ampères parcourant une spire de rayon 1 centimètre (Un centimètre (symbole cm) vaut 10-2 = 0,01 mètre.), cela donne un champ magnétique d'environ 10-5 Teslas. Pour augmenter cette valeur, un méthode simple est d'effectuer plusieurs tours avec le fil électrique : c'est le principe des bobines et du solénoïde.

Champ sur l'axe de la spire

Pour obtenir la valeur du champ sur l'axe de la spire en un point M tel que OM = z, il faut utiliser la même méthode que pour le paragraphe précédent, c'est-à-dire additionner les champs créés par des éléments de la spire. En définissant l'angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.) θ par tan(θ) = z / R, on obtient le résultat suivant :

\vec B(z) = \vec B(O) \cos^3(\theta).

Cette expression montre que, sur l'axe de la spire, le champ créé diminue lorsqu'on s'éloigne du centre O. Plus précisément, à une distance z très grande devant R, on obtient la relation :

\vec B(z) \simeq \vec B(O) \frac{R^3}{z^3}.

On retrouve ainsi une forme analogue au dipôle magnétique.

Champ loin de la spire

Dans ce cas on peut retrouver l'expression obtenue pour un moment dipolaire magnétique.

Cas d'un champ oscillant

On retrouve l'expression d'un dipôle magnétique oscillant.

Page générée en 0.022 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique