Nombre p-adique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématiques, un nombre p-adique est un élément du corps \mathbb Q_p des nombres p-adiques, où p est un nombre premier donné. On parle donc de nombre diadique, triadique, etc.

Les corps \mathbb Q_p des nombres p-adiques sont construits par complétion du corps \mathbb Q des nombres rationnels lorsque celui-ci est muni d'une norme (Une norme, du latin norma (« équerre, règle ») désigne un état habituellement répandu ou moyen considéré le plus souvent comme une règle à suivre. Ce terme...) particulière nommée norme p-adique et notée | . | p. En un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine....), les corps \mathbb Q_p sont apparentés au corps \R des nombres réels, qui est également une complétion du corps des nombres rationnels lorsque la norme considérée est la valeur absolue (Un nombre réel est constitué de deux parties: un signe + ou - et une valeur absolue.) habituelle.

La principale motivation (La motivation est, dans un organisme vivant, la composante ou le processus qui règle son engagement dans une action ou expérience. Elle en détermine le déclenchement dans une certaine direction avec l'intensité souhaitée et...) ayant donné naissance aux corps des nombres p-adiques était de pouvoir utiliser les techniques des séries entières dans la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) des nombres, mais leur utilité dépasse maintenant largement ce cadre. De plus, il est possible de munir un corps \mathbb Q_p d'une norme non-archimédienne. On obtient alors une analyse différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de...) de l'analyse usuelle, que l'on appelle analyse p-adique (L’analyse p-adique est une branche des mathématiques qui traite des fonctions de nombres p-adiques.).

Construction

Approche analytique

Les nombres réels sont définis comme des classes d'équivalence des suites de Cauchy des nombres rationnels. Cependant, cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) repose sur la métrique choisie et, en en choisissant une autre, d'autres nombres que les nombres réels peuvent être construits. La métrique utilisée pour les nombres réels est appelée métrique euclidienne.

Pour un nombre premier (Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs (qui sont alors 1 et lui-même). Cette définition exclut 1, qui n'a qu'un seul diviseur entier positif. Par...) donné p, on définit la norme p-adique sur \mathbb Q comme suit :

on rappelle que la valuation p-adique d'un entier a non nul est l'exposant (Exposant peut signifier:) de p dans la décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès l'instant qu'ils sont privés de vie, dégénèrent sous l'action de...) de a en produit de facteurs premiers.
on peut alors construire une valuation pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) nombre rationnel (Un nombre rationnel est un nombre réel exprimable par le quotient de deux entiers relatifs (), dont le second est non nul. L'ensemble des nombres rationnels est noté .) non nul en posant :
v_p\left(\frac ab \right) = v_p(a) - v_p(b).
On prouve aisément que cette définition est indépendante du représentant du rationnel choisi.
la norme p-adique | r | p d'un rationnel r non nul vaut p^{-v_p(r)}.
si r est nul, on pose | r | p = 0. Ce prolongement est compatible avec l'idée que 0 est divisible par pk pour toute valeur de k, donc que la valuation de 0 serait infinie.

En quelque sorte, plus r est divisible par p, plus sa norme p-adique est petite (c'est un cas particulier de valuation discrète un outil (Un outil est un objet finalisé utilisé par un être vivant dans le but d'augmenter son efficacité naturelle dans l'action. Cette augmentation se traduit par la simplification des...) algébrique !).

Par exemple, pour r = {63 \over 550} = 2^{-1}\times 3^2\times 5^{-2}\times 7\times 11^{-1} :

|r|_2=2\,
|r|_3={1 \over 9}\,
|r|_5=25\,
|r|_7={1\over 7}\,
|r|_{11}=11\,
|r|_p=1\, pour tout autre nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) premier.

On démontre que cette application a toutes les propriétés d'une norme. On peut montrer que toute norme (non-triviale) sur \mathbb Q est équivalente soit à la norme euclidienne, soit à une norme p-adique (théorème d'Ostrowski). Une norme p-adique définit une métrique dp sur \mathbb Q en posant :

dp(x,y) = | xy | p

Le corps \mathbb Q_p des nombres p-adiques peut alors être défini comme la complétion de l'espace métrique (En mathématiques, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. C'est un cas particulier d'espace topologique.) (\mathbb Q, dp). Ses éléments sont les classes d'équivalences des suites de Cauchy, où deux suites sont dites équivalentes si leur différence converge vers zéro (Le chiffre zéro (de l’italien zero, dérivé de l’arabe sifr, d’abord transcrit zefiro en italien) est un symbole marquant une position vide dans l’écriture des nombres en notation...). De cette façon, on obtient un espace métrique complet qui est aussi un corps et qui contient \mathbb Q.

Cette construction permet de comprendre pourquoi \mathbb Q_p est un analogue arithmétique (L'arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la...) de \mathbb R.

Approche algébrique

Dans cette approche algébrique, on commence par définir l'anneau des entiers p-adiques, puis par construction le corps des fractions de cet anneau pour obtenir le corps des nombres p-adiques.

On définit l'anneau des entiers p-adiques \mathbb Z_p comme la limite projective des anneaux \mathbb Z/p^n\mathbb Z. Un entier p-adique est alors une suite (a_n)_{n\ge 1} telle que a_n \in \mathbb Z/p^n\mathbb Z et que, si n < m, an = am[pn].

Par exemple, 35 en tant que nombre 2-adique serait la suite (1, 3, 3, 3, 3, 35, 35, 35 \ldots).

L'addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs...) et la multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) de telles suites sont bien définies, puisqu'elles commutent avec l'opérateur (Le mot opérateur est employé dans les domaines :) modulo ( En arithmétique modulaire, on parle de nombres congrus modulo n Le terme modulo peut aussi être associé à d'autres formes de congruence En informatique, le modulo (informatique) est une fonction qui au...) (voir arithmétique modulaire). De plus, toute suite (an) dont le premier élément n'est pas nul a un inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel que x·y = y·x = 1, si 1 désigne...).

L'anneau des entiers p-adiques ne possédant pas de diviseurs de zéro, il est possible de considérer son corps des fractions pour obtenir le corps \mathbb Q_p des nombres p-adiques.

Décomposition canonique de Hensel

Soit p un nombre premier. Tout élément non nul r de \mathbb Q_p (et en particulier tout élément de \mathbb Q) s'écrit de manière unique sous la forme :

r = \sum_{i=k}^\infty a_i p^i

k \in \Z et les ai sont des nombres entiers compris entre 0 et p − 1. Cette écriture est la décomposition canonique de r comme nombre p-adique.

Cette série est convergente suivant la métrique p-adique.

On note \Z_p l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) des éléments de \mathbb Q_p tels que k\ge 0 et on l'appelle ensemble des entiers p-adiques. \Z_p est un sous-anneau de \mathbb Q_p. On peut représenter un entier p-adique par une suite infinie vers la gauche de chiffres en base p, tandis que les autres éléments de \mathbb Q_p, eux, auront un nombre fini de chiffres à droite de la virgule. Cette écriture fonctionne en somme à l'inverse de ce qu'on a l'habitude de rencontrer dans l'écriture des nombres réels.

Par exemple, avec p = 2 :

  • 1 = 1\times 2^0 = \ldots 000001_2 (le 2 en indice indiquant qu'il s'agit du développement 2-adique de 1)
  • -1 = \sum_{n=0}^\infty 2^n = \ldots 11111111111111_2 : on peut vérifier que, puisque \ldots 001_2+\ldots 001_2=\ldots 0010_2, ajouter 1 à cette écriture conduit à décaler une retenue tout le long de l'écriture, pour finalement donner 0.
  • 3 = \ldots 000011_2
  • {1 \over 3} = 1 + \sum_{n=0}^\infty 2^{2n+1}= \ldots 01010101011_2 : en multipliant ce résultat par \ldots 000011_2, on retrouve 1.
  • \sum_{n=0}^\infty 2^{2^n} représente un élément de \mathbb Q_p (et même de \mathbb Z_p) qui n'est pas dans \mathbb Z.

Un autre exemple, avec p = 7 :

2 n'a pas de racine carrée (La racine carrée d’un nombre réel positif x est le nombre positif dont le carré vaut x. On le note ou x½; dans cette...) dans \mathbb Q mais en possède une dans \mathbb Q_7, à savoir \sqrt{2} = ...16244246442640361054365536623164112011266421216213_7.

Propriétés

Dénombrabilité

L'ensemble des entiers p-adiques n'est pas dénombrable.

Les nombres p-adiques contiennent les nombres rationnels et forment un corps de caractéristique nulle. Il n'est pas possible d'en faire un corps ordonné.

Topologie (La topologie est une branche des mathématiques concernant l'étude des déformations spatiales par des transformations continues (sans arrachages ni recollement des...)

La topologie sur l'ensemble des entiers p-adiques est celle de l'ensemble de Cantor (L'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor) est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor.); la topologie sur l'ensemble des nombres p-adiques est celle de l'ensemble de Cantor privé d'un point (Graphie) (qui serait naturellement appelé infini). En particulier, l'espace des entiers p-adiques est compact, tandis que l'espace des nombres p-adiques ne l'est que localement. En tant qu'espaces métriques, les entiers et les nombres p-adiques sont complets.

Les nombres réels n'ont qu'une seule extension algébrique (En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est-à-dire sont...) propre, les nombres complexes. En d'autres termes, cette extension quadratique est algébriquement close. La clôture algébrique (En mathématiques, une clôture algébrique d'un corps K est une extension algébrique de K qui est algébriquement close.) des nombres p-adiques est infinie. Les corps \mathbb Q_p ont une infinité d'extensions algébriques non équivalentes. De plus, la clôture (Une clôture désigne tout obstacle naturel ou fait de la main de l'homme (barrière) et suivant tout ou partie du pourtour d'un terrain afin de matérialiser...) algébrique d'un \mathbb Q_p n'est pas complète. Sa complétion métrique est appelée Ωp et elle est algébriquement close.

Le corps Ωp, aussi noté \mathbb C_p, est abstraitement isomorphe au corps \mathbb C des nombres complexes et il est possible de considérer le premier comme le dernier, muni d'une métrique exotique. Il faut cependant noter que l'existence d'un tel isomorphisme est une conséquence de l'axiome (Un axiome (du grec ancien αξιωμα/axioma, « considéré comme digne, convenable, évident en soi »)...) du choix et qu'il n'est pas possible d'en expliciter un.

Les nombres p-adiques contiennent le ne corps cyclotomique si et seulement si n divise p − 1. Par exemple, les 1er, 2e, 3e, 4e, 6e et 12e corps cyclotomiques sont des sous-corps de \mathbb Q_{13}.

Le nombre e n'est élément d'aucun des corps p-adiques. Cependant, ep est un nombre p-adique, sauf si p = 2. e est un élément de la clôture algébrique de tous les corps p-adiques.

Sur les nombres réels, les seules fonctions dont les dérivées sont nulles sont les fonctions constantes. Ceci n'est pas vrai sur les nombres p-adiques. Par exemple, la fonction

f:\mathbb Q_p \longrightarrow \mathbb Q_p,\,x\longmapsto\left\{\begin{matrix} \left({1 \over |x|_p}\right)^2, & \mbox{si }x \ne \mbox{0} \\ 0, & \mbox{si }x=\mbox{0} \end{matrix}\right.

possède une dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la quantité dont elle dépend, son argument, change. Plus précisément, une dérivée est une...) nulle en tous points, mais n'est même pas constante localement en 0.

Si on se donne les éléments r, r_2, r_3, r_5, r_7 \ldots respectivement membres de \R, \mathbb Q_2, \mathbb Q_3, \mathbb Q_5, \mathbb Q_7 \ldots, il est possible de trouver une suite (xn) de \mathbb Q telle que la limite des xn dans \R soit r et, pour tout p premier, elle soit rp dans \mathbb Q_p.

Rationalité

Un nombre positif γ0 est rationnel si, et seulement si, son développement p-adique est périodique à partir d'un certain rang ( Mathématiques En algèbre linéaire, le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Le théorème du rang lie le rang et la dimension du noyau d'une application linéaire...), c'est-à-dire, s'il existe 2 entiers N \geq 0 et k > 0 tel que \forall n \geq N, a_{n+k}=a_{k} (La suite an représentant le développement p-adique du nombre γ0)

Page générée en 0.131 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique