Éther (physique) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

L'éther gravitationnel en physique pré-relativiste

René Descartes élabora une mécanique des tourbillons pour expliquer que le mouvement des planètes est dû à de grands tourbillons d'éther (matière subtile composée de minuscules globules transparents) remplissant l'espace et qui les emportent et les maintiennent sur leurs trajectoires. Cette physique qualitative était propre à justifier le mouvement des planètes de manière mécaniste, en réfutant l'existence du vide. Ce même éther était supposé transmettre instantanément la lumière sous la forme d'une pression.

Après avoir réfuté la théorie des tourbillons de Descartes (vers 1680), Isaac Newton élabore sa théorie de la gravitation universelle où la force gravitationnelle se transmet instantanément d'un corps à l'autre, sur des distances quelconques et à travers l'espace, vide ou non.

Newton, bien que satisfait de l'efficacité de sa théorie, ne se satisfaisait de cette situation où une force se transmet à travers le vide. Dans une lettre de Newton à Richard Bentley en 1692 : « Que la gravité soit innée, inhérente et essentielle à la matière, en sorte qu'un corps puisse agir sur un autre à distance au travers du vide, sans médiation d'autre chose, par quoi et à travers quoi leur action et force puissent être communiquées de l'un à l'autre est pour moi une absurdité dont je crois qu'aucun homme, ayant la faculté de raisonner de façon compétente dans les matières philosophiques, puisse jamais se rendre coupable. »

Ainsi, dans le Scholium général du livre III des Principia, conçoit-il un « espèce d'esprit très subtil qui pénètre à travers tous les corps solides », ajoutant que « c'est par la force, et l'action de cet esprit que les particules des corps s'attirent mutuellement » : un éther mécanique, emplissant l'espace et justifiant la transmission de la force gravitationnelle.

Cet éther est médiateur de la force gravitationnelle mais n'y est pas soumis, et semble soustrait aux caractéristiques et principes physiques énoncés dans les Principa. Newton soutenait ce point de vue à partir de considérations théologiques, disant que l'espace est le sensorium Dei, sorte d'organe sensoriel de Dieu qui Lui permet de transmettre les influences d'un corps à l'autre. Cet éther est toujours resté une hypothèse passive, n'intervenant pas dans les calculs, ayant le statut d'hypothèse rassurante quant à la cohérence de cette théorie. De plus, pour Newton, cet éther ne semble pas identifiable à l'éther luminifère, mais la confusion fût souvent faite par ses successeurs.

L'éther après 1905

Le temps de réception de la Relativité restreinte fut long : surtout les conséquences aussi « absurdes » que le paradoxe des jumeaux de Langevin, la dilatation du temps, la contraction des longueurs, la précession de Thomas, tout ce qui contre-carrait la notion de temps absolu, faisaient obstacle. Dans les années 1920, Gamow fut écœuré de voir que les plus grands physiciens soviétiques croyaient encore à l'éther.

Bref, il y eut réticence. Et des dizaines de contradicteurs d'Einstein encombrent encore la littérature scientifique, alors que des dizaines d'accélérateurs ont délimité la précision de la Relativité Restreinte, au-delà des étalons primaires.

Et surtout, la Relativité Générale en déformant la « texture de l'espace » en une géométrie riemannienne, a fait disparaître définitivement l'éther du XIXe siècle.

Néanmoins, le développement de la Relativité générale conduira Einstein a revenir de façon radicale sur ses conceptions de 1905, ainsi qu’il l’explique dans la célèbre conférence qu’il prononça à l’université de Leyde le 5 mai 1920. Le texte de celle-ci, intitulée « L’éther et la théorie de la Relativité Générale, » a été traduit en français par Maurice Solovine, publié par les Editions Gauthier-Villars en 1921, puis réédité en 1964. Einstein y indique notamment :

« La théorie du champ électromagnétique de Maxwell - Lorentz a servi de modèle à la théorie d'espace-temps et à la cinématique de la théorie de la relativité restreinte. Cette théorie satisfait par conséquent aux conditions de la théorie de la relativité restreinte, mais elle reçoit, quand on l'envisage au point de vue de la dernière, un aspect nouveau. Soit K un système de coordonnées, par rapport auquel l'éther de Lorentz se trouve au repos. Les équations de Maxwell - Lorentz restent tout d'abord valables par rapport à K. Mais, d'après la théorie de la relativité restreinte les mêmes équations restent valables dans le même sens par rapport à tout nouveau système de coordonnées K' qui se trouve dans un mouvement de translation uniforme par rapport à K. Il se pose maintenant la question troublante : pourquoi faut-il que je donne en théorie au système K auquel les systèmes K' sont physiquement tout à fait équivalents, une préférence marquée, en supposant que l'éther se trouve en repos par rapport à lui ? Une telle asymétrie dans l'édifice théorique, à laquelle ne correspond aucune asymétrie dans le système des expériences, est insupportable pour le théoricien. Il me semble que l'équivalence physique entre K et K', si elle n'est pas logiquement irréconciliable avec la supposition que l'éther est immobile par rapport à K et en mouvement par rapport à K', ne s'accommode cependant pas bien avec elle.

Le point de vue qu'on pouvait, au premier abord, adopter en face de cet état de choses semblait être le suivant : l'éther n'existe point du tout. Les champs électromagnétiques ne représentent pas des états d'un milieu, mais sont des réalités indépendantes, qui ne peuvent être réduites à rien d'autre et qui ne sont liées à aucun substratum, exactement comme les atomes de la matière pondérable. Cette conception s'impose d'autant plus que, selon la théorie de Lorentz, le rayonnement électromagnétique porte avec soi le pouvoir d'impulsion et de l'énergie, comme la matière pondérable, et parce que, d'après la théorie de la relativité restreinte, la matière et le rayonnement ne sont tous les deux que des formes particulières de l'énergie éparse. La masse pondérable perd ainsi sa position privilégiée et n'apparaît que comme une forme particulière de l'énergie.

Une réflexion plus attentive nous apprend pourtant que cette négation de l'éther n'est pas nécessairement exigée par le principe de la relativité restreinte. On peut admettre l'existence de l'éther, mais il faut alors renoncer à lui attribuer un état de mouvement déterminé, c'est-à-dire il faut le dépouiller par l'abstraction de son dernier caractère mécanique que Lorentz lui a encore laissé. [...] »

« Il est vrai que Mach, pour échapper à la nécessité de supposer une réalité inaccessible à l'observation, s'efforça d'introduire en mécanique, à la place de l'accélération par rapport à l'espace absolu, l'accélération moyenne par rapport à la totalité des masses de l'univers. Mais la force d'inertie envers l'accélération relative de masses éloignées suppose une action à distance sans milieu intermédiaire. [...] La pensée de Mach reçoit son plein épanouissement dans l'éther de la théorie de la relativité générale. D'après cette théorie, les propriétés métriques du continuum spatio-temporel sont différentes dans l'entourage de chaque point spatio-temporel et conditionnées par la matière qui se trouve en dehors de la région considérée. Ce changement spatio-temporel des relations entre les règles et les horloges, ou la conviction que l'espace vide n'est physiquement ni homogène ni isotrope – ce qui nous oblige à représenter son état par dix fonctions, les potentiels de gravitation gµν – ces faits, dis-je, ont définitivement écarté la conception que l'espace serait physiquement vide. Par là, la notion de l'éther a de nouveau acquis un contenu précis, contenu certes qui diffère notablement de celui de l'éther de la théorie ondulatoire mécanique de la lumière. L'éther de la théorie de la relativité générale est un milieu privé de toutes les propriétés mécaniques et cinématiques, mais qui détermine les phénomènes mécaniques (et électromagnétiques). »

Einstein termine son exposé en ces termes :

« En résumant, nous pouvons dire : d'après la théorie de la relativité générale, l'espace est doué de propriétés physiques ; dans ce sens, par conséquent un éther existe. Selon la théorie de la relativité générale, un espace sans éther est inconcevable, car non seulement la propagation de la lumière y serait impossible, mais il n'y aurait même aucune possibilité d'existence pour les règles et les horloges et par conséquent aussi pour les distances spatio-temporelles dans le sens de la physique. Cet éther ne doit cependant pas être conçu comme étant doué de la propriété qui caractérise les milieux pondérables, c'est-à-dire comme constitué de parties pouvant être suivies dans le temps : la notion de mouvement ne doit pas lui être appliquée. »

Notons enfin, bizarrerie du XXIe siècle, que les propriétés déconcertantes découvertes concernant le vide (énergie du vide, énergie sombre) rappellent étrangement les propriétés mystérieuses de l'éther. Mais les physiciens soulignent bien qu'il ne s'agit pas de revenir aux hypothèses d'avant 1905. Il règne néanmoins une certaine incompréhension sur ce sujet, qui devient de fait une porte ouverte à la pseudo-science.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise