Forcing - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Modèles à valeurs booléennes

La méthode du forcing peut peut-être s'expliquer plus clairement en termes de modèles à valeurs booléennes. Dans ces modèles, chaque assertion se voit attribuer une valeur de vérité choisie dans une algèbre de Boole infinie, plutôt que simplement l'une des deux valeurs "vrai" ou "faux". On choisit ensuite un ultrafiltre sur cette algèbre, le passage au quotient par cet ultrafiltre donne des valeurs vrai/faux aux assertions. La théorie résultante possède un modèle contenant cet ultrafiltre, que l'on peut interpréter comme un modèle étendant le modèle de départ. En choisissant ce dernier, et l'ultrafiltre, de manière appropriée, on peut obtenir les propriétés voulues, car en un sens, seules les assertions qui doivent être vraies (qui sont "forcées" d'être vraies) le seront, par la propriété d'extension minimale.

Réels aléatoires

Dans l'exemple des ensembles boréliens (Bor(I) , ⊆ , I), un filtre générique donné converge vers un nombre réel r, dont on dit que c'est un réel aléatoire. Un P-nom pour le développement décimal de r (au sens de l'ensemble canonique d'intervalles décimaux convergeant vers r) peut être donné en posant r = { ( Eˇ , E ) : E = [ k⋅10n , (k+1)⋅10n ], 0≤k<10n }. En un sens, ceci est simplement un sous-nom de G.

Pour retrouver G à partir de r, on prend les borèliens de I "contenant" r. Comme l'ensemble de conditions est dans V, mais que ce n'est pas le cas de r, cela est à proprement parler impossible. Mais il est en un certain sens naturel de dire que l'intervalle [.5,.6] de V "contient" un réel aléatoire dont le développement décimal commence par .5. Ceci se formalise grâce à la notion de "code borélien".

Tout borélien peut être construit en partant d'intervalles à extrémités rationnelles et en prenant les opérations de complémentaire et d'union dénombrable, ce un nombre dénombrable de fois (cette construction n'étant pas unique). La liste de ces opérations est appelé un code borélien. Étant donné un borélien B dans V, on en détermine un code, et on applique la même séquence de construction dans V[G], obtenant un borélien B*, dont on démontre qu'il ne dépend pas du code choisi, et que ses propriétés élémentaires sont les mêmes, par exemple, que si BC, alors B*⊆C*, ou que si B est de mesure nulle, il en est de même de B*.

Ainsi, étant donné un réel aléatoire r, on peut montrer que G = { B (dans V) : rB* (dans V[G]) }. Cette équivalence amène généralement à écrire V[r] au lieu de V[G].

Une interprétation différente des réels de V[G] a été donnée par Dana Scott. Les rationnels de V[G] ont des noms qui correspondent à un ensemble dénombrable de valeurs rationnelles distinctes associées à une antichaîne de boréliens, ou, en d'autres termes, à une certaine fonction à valeurs rationnelles sur I = [0,1]. Les réels de V[G] correspondent alors à des coupures de Dedekind de telles fonctions, autrement dit, à des fonctions mesurables.

Une interprétation métamathématique

Par le forcing, on cherche usuellement à montrer qu'une assertion donnée est cohérente avec ZFC (ou parfois avec une certaine extension de ZFC). Une façon d'interpréter cet argument est de supposer ZFC cohérente, et de l'utiliser pour démontrer la cohérence de ZFC + cette assertion.

Chaque condition de forcing est un ensemble fini d'informations, l'idée étant que seuls ces ensembles finis sont pertinents pour des démonstrations de cohérence, puisque d'après le théorème de compacité, une théorie possède un modèle si chaque sous-ensemble fini de ses axiomes en a un. On peut donc choisir un ensemble infini de conditions pour étendre un modèle de la théorie des ensembles, il suffit de vérifier la cohérence condition par condition, puis, déduire de la cohérence de la théorie des ensembles, la cohérence de la théorie étendue par cet ensemble infini de conditions.

Page générée en 0.082 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise