Forcing - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La condition de chaîne dénombrable

Une antichaîne A de P est un sous-ensemble tel que si p et q sont dans A, alors p et q sont incompatibles (ce qu'on note pq), ce qui veut dire qu'il n'y a pas de r dans P tel que rp et rq. Dans l'exemple des ensembles boréliens, l'incompatibilité de p et q signifie que pq est de mesure nulle. Dans l'exemple des applications de domaine fini, l'incompatibilité signifie que pq n'est pas une fonction, c'est-à-dire que p et q prennent deux valeurs différentes au même point.

On dit que P satisfait à la condition de chaîne dénombrable si toute antichaîne de P est dénombrable. On voit facilement que Bor(I) satisfait la condition de chaîne dénombrable, parce que la somme des mesures ne peut dépasser 1. Il en est de même de Fin(E,2) pour tout ensemble E infini, mais la démonstration en est plus difficile.

Ce qui justifie l'importance des antichaînes dans le forcing, c'est que pour la plupart des applications, ensembles denses et antichaînes maximales sont équivalents. Une antichaîne maximale A (pour l'inclusion) est une antichaîne telle que tout élément pP est compatible avec au moins un élément de A (toute antichaîne est contenue dans une antichaîne maximale, d'après le lemme de Zorn). Étant donnée une antichaîne maximale A, soit D = {p : il existe qA, pq}. D est dense, et GD≠0 si et seulement si GA≠0. Réciproquement, étant donné un sous-ensemble dense D, le lemme de Zorn montre qu'il existe une antichaîne maximale AD, et alors GD≠0 si et seulement si GA≠0.

Supposons alors que P satisfasse la condition de chaîne dénombrable. Étant donnés x etyV, avecf:xy dans V[G], on peut approximer f dans V de la manière suivante : soit u un P-nom pour f (il en existe un par définition de V[G]) et p une condition qui force u à être une fonction de x vers y. On définit une fonction F dont le domaine est x par F(a) = { b : ∃ qp, q force u(aˇ) = bˇ }. D'après la propriété de définissabilité, cette définition a un sens dans V. Par cohérence du forcing, des b différents viennent de p incompatibles. D'après la condition de chaîne dénombrable, F(a) est donc dénombrable.

En résumé, f est « inconnue » dans V, puisqu'elle dépend de G, mais pas complètement pour un forcing satisfaisant à la condition de chaîne dénombrable : en effet, on peut alors identifier un ensemble dénombrable d'hypothèses sur la valeur de f en n'importe quelle entrée, indépendamment de G.

Il en découle la très importante conséquence suivante : si dans V[G], f:α→β est une surjection d'un ordinal infini vers un autre, une surjection analogue existe dans V. En particulier, les cardinaux ne peuvent s'effondrer ; la conclusion est que 2ℵ₀ ≥ ℵ2 dans V[G] ; la même construction permet en fait d'affecter à 2ℵ₀ "presque" n'importe quelle valeur comme on le verra dans la section suivante.

Page générée en 0.031 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise