Géométrie analytique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Géométrie analytique plane

Le plan affine est muni d'un repère (\mathrm{O},\vec{i},\vec{j})  ; x désigne l'abscisse d'un point, et y l'ordonnée de ce point.

Droite

Une droite affine (c'est-à-dire une droite au sens habituel, un ensemble de points) est représentée par une équation du premier degré à deux inconnues :

ax + by + c = 0 (1)

Si c est nul, alors la droite passe par l'origine O. Si deux droites sont parallèles, alors leurs coefficients a et b sont proportionnels. Si b n'est pas nul, cette équation peut se réécrire :

y = a′·x + b′

a′ = - a/b est appelé le coefficient directeur ou la pente de la droite, et b′ = - c/b est appelé ordonnée à l'origine (offset ou intercept en anglais) ; deux droites parallèles ont le même coefficient directeur. Avec cette forme là, on voit aisément que la droite passe par le point (0,b′), qui est également appelé ordonnée à l'origine (le terme désigne donc à la fois le point et l'ordonnée de ce point). Si a est nul, on a une droite horizontale

y = b′

passant par le point (0,b′). Si b est nul, on a une droite verticale

x = - c/a

passant par le point (- c/a,0).

Pour tracer une droite à partir de son équation, il suffit de connaître deux points. Le plus simple est de prendre l'intersection avec les axes, c'est-à-dire de considérer successivement x = 0 et y = 0 (sauf si la droite est parallèle à un axe, auquel cas le tracé est trivial). On peut aussi prendre l'ordonnée à l'origine et un point « éloigné » (c'est-à-dire au bord de la figure tracée sur le papier, par exemple considérer x = 10 si l'on va jusqu'à 10), ou encore deux points éloignés (un à chaque bord de la figure) ; en effet, plus les points sont éloignés, plus le tracé de la droite est précis.

Une droite vectorielle (c'est-à-dire un ensemble de vecteurs colinéaires, proportionnels entre eux) est représentée simplement par une équation de droite avec c nul :

au1 + bu2 = 0

u1 et u2 sont les composantes des vecteurs. On en déduit que pour une droite affine ou vectorielle, le vecteur de composantes

\vec{u} = \begin{pmatrix} -b \\ a \end{pmatrix}

est un vecteur directeur de la droite. Si le repère est orthonormé, d'après une propriété du produit scalaire, le vecteur

\vec{N} = \begin{pmatrix} a \\ b \end{pmatrix}

est un vecteur normal à la droite.

Quel que soit le repère, si A(xA,yA) est un point de la droite et \vec{u} un vecteur directeur, alors pour tout point M(xM,yM) de la droite, on a

\overrightarrow{\mathrm{AM}} = k \cdot \vec{u},\ k \in \mathbb{R}

puisque \overrightarrow{\mathrm{AM}} est colinéaire à \vec{u} . Ceci nous donne une équation paramétrique de la droite :

\left\{\begin{matrix} (x_\mathrm{M} - x_\mathrm{A}) = k \cdot u_1 \\ (y_\mathrm{M} - y_\mathrm{A}) = k \cdot u_2 \end{matrix}\right.

qui peut s'écrire

\left\{\begin{matrix} x_\mathrm{M} = u_1 \cdot k + x_\mathrm{A} \\ y_\mathrm{M} = u_2 \cdot k + y_\mathrm{A} \end{matrix}\right. (2)

en éliminant le paramètre k, on retrouve une équation de la forme (1).

Point

Un point est représenté par un système de deux équations du premier degré à deux inconnues :

\left\{\begin{matrix} x = a \\ y = b \end{matrix}\right.

ce qui est logique puisque, un point étant l'intersection de deux droites non-parallèles, ses coordonnées doivent vérifier les équations des deux droites : la réduction de ce système d'équations donne la forme ci-dessus. Ceci est bien évidemment la représentation du point (a,b).

Demi-plan

Un demi-plan est représenté par une inéquation du premier degré à deux inconnues :

ax + by + c > 0

si l'on remplace le signe > par un signe =, on obtient l'équation de la droite qui délimite le demi-plan ; si l'on remplace le signe > par le signe < (ou si l'on inverse les signe des coefficients), on obtient le demi-plan complémentaire.

Intersection de droites

Le plan est rapporté à un repère. Une droite (non verticale) peut être définie par une équation :

y = ax + b.

Si on considère 2 droites définies par les équations y = ax + b et y = a'x + b', on peut savoir s'il y a une intersection ou non grâce à l'un des 3 cas suivant :

  • si a = a' et bb', alors les droites sont parallèles et il n'y a pas d'intersection ;
  • si a = a' et b = b', alors les 2 droites sont confondues et il y a donc une infinité de points d'intersection ;
  • si aa', quels que soient b et b', il y a forcément un point d'intersection ; on obtient comme coordonnées du point d'intersection :
x = \frac{(b' - b)}{(a - a')} et
y = \frac{(ab' - a'b)}{(a - a')} .

La démonstration se fait grâce à la résolution d'un système de deux équations à deux inconnues : y = ax + b et y = a'x + b'.

Demi-droite

Une demi-droite est caractérisée par une équation et une inéquation :

\left\{\begin{matrix} ax + by + c = 0 \\ a'x + b'y + c > 0 \end{matrix}\right.

avec au moins a ≠a′ ou b ≠b′. Une demi-droite est en effet l'intersection d'une droite et d'un demi-plan délimité par une droite non parallèle à la première. La résolution du système obtenu en remplaçant le signe « > » par un signe « = » donne les coordonnées du point extrémité de la demi-droite, c'est-à-dire les coordonnées du point A d'une demi-droite [AB). Si a′ est non-nul, on peut se ramener à un système du type :

\left\{\begin{matrix} ax + by + c = 0 \\ x > d \end{matrix}\right. \ \mathrm{ou} \ \left\{\begin{matrix} ax + by + c = 0 \\ x < d \end{matrix}\right.

(les deux systèmes représentant des demi-droites complémentaires), sinon à un système du type :

\left\{\begin{matrix} ax + by + c = 0 \\ y > d \end{matrix}\right. \ \mathrm{ou} \ \left\{\begin{matrix} ax + by + c = 0 \\ y < d \end{matrix}\right.

Avec une équation paramétrique, cela revient à l'équation (2) en rajoutant la condition k > 0 ou k < 0.

Le cercle et le disque

Le cercle de centre A et de rayon r est l'ensemble des points situés à une distance r de A. Son équation est donc :

(xxA)2 + (yyA)2 = r2

que l'on peut écrire :

y = y_\mathrm{A} + \sqrt{r^2 - (x-x_\mathrm{A})^2},\ x \in [x_\mathrm{A}-r,x_\mathrm{A}+r]

Cette forme porte le nom « d'équation cartésienne du cercle ». Son équation paramétrique est :

\left\{\begin{matrix} x = x_\mathrm{A} + r \cdot \cos \theta \\ y = y_\mathrm{A} + r \cdot \sin \theta \end{matrix}\right.

où θ est un réel, qui peut être pris sur un intervalle de largeur 2π ; on prend en général ]-π,π] ou [0,2π[. L'équation du disque s'obtient en remplaçant le signe « égal » par un signe « inférieur ou égal ».

Page générée en 0.102 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise