En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que aleph zéro, aleph-ω, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes.
Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée. Il n'y pas vraiment de consensus sur une définition précise de ce qu'est une telle propriété, bien que pratiquement tout le monde s'accorde à dire qu'une vaste liste de propriétés mérite ce qualificatif. Une condition nécessaire raisonnable pour qu'une propriété soit appelée une propriété de grand cardinal est que l'existence d'un cardinal ayant cette propriété ne soit pas connue pour être contradictoire avec les axiomes de ZFC, et qu'on ait cependant également prouvé que si ZFC est cohérente, il en est de même de "ZFC + il n'existe pas de tel cardinal". L'affirmation de l'existence d'un tel cardinal peut donc être vu comme un renforcement (strict) de ZFC, et l'utilisation d'un tel axiome comme une mesure de ce qu'on doit ajouter à ZFC pour pouvoir démontrer tel ou tel résultat ; comme le dit Dana Scott, on peut les voir comme un moyen de préciser quantitativement la phrase "si on veut plus de résultats, il faut supposer davantage de choses". Il semble généralement admis que les résultats démontrés en n'utilisant que ZFC n'ont pas à le préciser, tandis que les autres hypothèses (telles qu'un axiome de grand cardinal) doivent être explicitées ; que ceci soit une convention linguistique ou autre chose est un sujet de débats épistémologiques qui seront abordés plus loin.
Une interprétation naturelle des axiomes de grands cardinaux utilise l'univers de Von Neumann, V, construit par récurrence transfinie en prenant à chaque étape l'ensemble des parties de l'ensemble précédent, ou la réunion des ensembles déjà construits aux étapes limites. On peut alors typiquement considérer les modèles dans lesquels un certain axiome de grand cardinal est faux comme des sous-modèles de ceux dans lesquels il est vrai. Par exemple, s'il existe un cardinal inaccessible, arrêter la construction de Von Neumann au premier ordinal inaccessible donne un modèle (un "univers") dans lequel il n'y a pas de cardinal inaccessible. De même, s'il existe un cardinal mesurable, restreindre la construction de V aux ensembles de parties définissables aboutit à l'univers constructible de Gödel, L, lequel satisfait l'axiome de constructibilité, et qui ne vérifie pas l'assertion "il existe un cardinal mesurable" (bien qu'il les contienne toujours, en tant qu'ordinaux). Ainsi, d'un certain point de vue (soutenu par de nombreux théoriciens, en particulier ceux inspirés par la tradition du groupe Cabal), ces axiomes "disent" que nous prenons en compte tous les ensembles, alors que leurs négations sont "restrictives" et reviennent à se limiter à certains ensembles seulement. De plus, les conséquences de ces axiomes suivent souvent des schémas réguliers (voir l'article de Maddy : "Believing the axioms, II") ; pour toutes ces raisons, ces théoriciens tendent à considérer les axiomes de grands cardinaux comme ayant un statut privilégié parmi les extensions de ZFC, contrairement à des axiomes moins clairement motivés (comme l'axiome de Martin) ou à d'autres qu'ils estiment intuitivement peu plausibles (comme V = L). Les tenants les plus convaincus du réalisme, dans ce groupe, affirmeraient, plus simplement, que ces axiomes sont vrais. Ce point de vue ne fait nullement l'unanimité parmi tous les théoriciens : certains formalistes considèrent la théorie des ensembles standard comme étant, par définition, l'étude des conséquences de ZFC, et bien qu'ils ne soient pas opposés par principe à l'étude d'autres systèmes, ne voient pas de raison de considérer les grands cardinaux comme particulièrement dignes d'intérêt. Certains réalistes nient qu'un maximalisme ontologique soit une motivation suffisante, et tiennent parfois même ces axiomes pour faux. Et enfin, on rencontre parfois la position selon laquelle la négation de ces axiomes n'est nullement restrictive, soutenue (par exemple) par la remarque selon laquelle il peut y avoir un sous-modèle transitif de L qui "croit" qu'il existe un cardinal mesurable, alors que cette proposition est fausse dans L.