Les fréquences géniques des allèles des groupes sanguins, calculées grâce à la loi de Castle-Hardy-Weinberg, ont permis l'essor de la génétique des populations. Grâce à elle, nous pouvons suivre les migrations et les filiations des diverses populations du globe.
Dans tous les systèmes nous pouvons voir des antigènes faibles, souvent signalés par un astérisque, ou un f -faible- en indice, ou un w -weak- en indice, sur les résultats du laboratoire, tels les A*, B*, E* ou FY1* ou JK1w. Il est même parfois impossible de mettre ces antigènes en évidence par les techniques habituelles de groupage. Sont alors utilisée des techniques de fixation-élution, voire de biologie moléculaire si besoin.
Il en est ainsi des antigènes A faibles ou B faibles (A3, Ax, Am...B3, Bx...) pour lesquels c'est la faiblesse ou l'absence d'anticorps anti-A ou d'anti-B à l'épreuve de Simonin-Michon qui attire l'attention, et évite que ces groupes ne soient, à tort, étiquetés O. Cet antigène A, ou B, est cependant présent sur les érythrocytes, mais n'est pas mis, ou mal mis en évidence lors de l'épreuve globulaire de Beth-Vincent.
Dans le système RH, les antigènes D faibles sont encore appelés Du.
Tous les autres antigènes de groupe sanguin peuvent être affaiblis, pour diverses raisons, mutation du gène, manque de substrat, gène inhibiteur...Ainsi, comme pour le Rhnull, existe un phénotype Lunull, donc Lu(a-, b-), dû soit à la présence d'un gène amorphe en double dose, cas où aucun antigène LU ne peut être mis en évidence, soit, le plus souvent, à l'action d'un gène inhibiteur. Il s'agit souvent d'un gène autosomique IN(Lu) actif en simple dose, cas où une très faible quantité d'antigène peut être mise en évidence sur les érythrocytes. Ce gène IN(Lu) provoque une forte dépression des antigènes Lutheran, para-Lutheran et AnWj (Anton), et un affaiblissement des antigènes de certains autres systèmes de groupes sanguins, P1, i, Indian, Knops. Existe également, dans quelques familles, un second gène inhibiteur Luthéran nommé XS2, lié au chromosome X, le gène normal étant nommé XS1, dont l'action est légèrement différente de In(Lu) sur les autres antigènes de groupe sanguin.
Certains antigènes de groupe sont connus pour donner, au laboratoire, des réactions très variables d'un individu à l'autre, tel l'antigène P1 chez l'adulte, ou donnent des réactions plus faibles chez le sujet hétérozygote que chez l'homozygote (effet de dose, antigènes M, N, S, Jka...), ou ne sont pas développés à la naissance et apparaissent progressivement en l'espace de deux ou cinq ans, comme les antigènes Lewis ou P1.
Certaines femmes Le(a-, b+) ou Le(a+, b-), pour trente pour cent d'entre elles, perdent pendant leur grossesse l'antigène Lewis qu'elles possèdent. Elles apparaissent donc comme Le(a-, b-) et développent un anticorps naturel anti-Lewis, anti-Lea, anti-Leb et/ou anti-Lex. Un mois au plus après l'accouchement, cet anticorps a disparu et ces femmes ont retrouvé leur phénotype Lewis normal. Cette perte d'antigène est sans conséquence pour l'érythrocyte, car la substance Lewis est une substance (glycosphingolipide) qui n'appartient pas à la membrane de l'érythrocyte, mais est une substance soluble (que l'on trouve dans le plasma, la salive, les larmes, le lait, le sperme...) adsorbée passivement sur l'érythrocyte.
La substance Lewis n'est pas détectée sur l'érythrocyte du fœtus ni du nouveau-né qui est donc Le(a-, b-) à la naissance. Il apparaît Le(a+, b-) à l'âge d'un mois environ, puis Le(a+, b+) avant de devenir Le(a-, b+) vers l'âge de deux ans si tel doit être son phénotype définitif, lorsqu'il est génétiquement Le (gène Le) et Sécréteur (gène Se), du moins chez les caucasiens. Ceci explique, entre autres raisons, que les anti-Lewis développés chez la mère n'ont aucune conséquence pour le fœtus.
Lorsque les placentas de deux jumeaux dizygotes fusionnent et permettent une circulation croisée entre les fœtus, chacun d'entre eux possède alors ses propres cellules souches ainsi que celles de son jumeau ou de sa jumelle. Il y a greffe, tolérance immunitaire et les deux lignées cellulaires cohabitent chez le même individu. Dans chaque système nous pouvons observer une double population cellulaire due à la différence de groupe selon l'origine des cellules. Certains érythrocytes appartenant en propre à l'individu seront, par exemple, A, Rh+, K-, d'autres, venant de son jumeau pourront être B, rh-, K+. Parfois, en cas de mort précoce du second embryon, le chimérisme est une découverte fortuite pour l'individu survivant. C'est un cas qui peut poser problème dans les recherches en paternité, voire simuler une exclusion de maternité, le patrimoine génétique des cellules circulantes n'étant pas le même que celui des cellules somatiques ou germinales.
Parfois même il y a fusion précoce entre les deux œufs et il n'en résulte qu'un seul individu, ce qui ne pose pas de problème si les œufs sont du même sexe. Il en résulte un individu unique qui possède donc deux types de cellules, et pas seulement les cellules hématopoïétiques, chaque lignée cellulaire ayant son propre patrimoine génétique.
Les mêmes images de double population se voient régulièrement au laboratoire après transfusion, et dans le cas de greffes de moelle thérapeutiques. Cette double population est visible avant prise totale de la greffe, et réapparaît en cas de rejet.
Dans certaines affections préleucémiques, anémies réfractaires en particulier, certaines lignées d'érythrocytes peuvent perdre, ou plutôt ne plus synthétiser, certains antigènes de groupes sanguins. Par exemple, un sujet connu de groupe AB, peut avoir trois types de globules en circulation, à savoir des globules AB, A, et O, la première lignée n'étant pas atteinte, la seconde ayant perdu une enzyme, et la troisième en ayant perdu deux. Nous avons alors affaire à ce que nous nommons des doubles populations érythrocytaires. Ce constat est parfois un élément étiologique de l'anémie, bien avant les autres éléments cliniques.
Cette perte d'antigènes de groupes sanguins peut s'accompagner d'une perte d'autres enzymes érythrocytaires (adélinate kinase), sans parler des atteintes chromosomiques possibles des autres lignées myéloïdes.
Lors d'infections du tube digestif, lors de cancers coliques en particulier, certains germes libèrent une enzyme, une désacétylase, qui transforme la N-acétyl-galactosamine, qui constitue la substance A du groupe ABO, en galactosamine. Certains réactifs anti-B, reconnaissant normalement uniquement le galactose, réagissaient alors comme si le groupe possédait la substance B. Les réactifs maintenant commercialisés sont contrôlés et ne présentent plus, en principe, cette réaction croisée, qui pouvait être source d'erreur entre des mains inexpérimentées, faisant déterminer comme AB un sujet de groupe A. Dès la fin de l'infection, l'anomalie disparaît progressivement.