Histoire de la théorie des cordes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Cet article résume l'histoire de la théorie des cordes.

La théorie des cordes est une théorie de la physique moderne qui tente d'unifier la mécanique quantique (physique aux petites échelles) et la théorie de la relativité générale (nécessaire pour décrire la gravitation de manière relativiste).

La principale particularité de la théorie des cordes est que son ambition ne s'arrête pas à cette réconciliation, mais qu'elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout,

Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes.

1943-1958: S-Matrix

La théorie des cordes a été à l'origine inventée pour expliquer certaines particularités du comportement des hadrons (particules sub-atomiques qui subissent la force nucléaire forte). Dans les expériences au sein d'accélérateurs de particules, les physiciens ont observé que le spin d'un hadron n'était jamais plus grand qu'un certain multiple du carré de son énergie. Aucun modèle simple du hadron, comme par exemple le représentant comme un ensemble de plus petites particules rassemblées pour des forces agissant comme des ressorts, ne permettait d'expliquer ce phénomène.

1968-1974: Le modèle dual de résonance

En 1968, le physicien Gabriele Veneziano remarqua que la fonction bêta d'Euler pouvait être utilisée pour décrire la dispersion de l'amplitude des grandeurs pour des particules interagissant via la force nucléaire forte. Bien que cette remarque corresponde bien aux données expérimentales, les raisons de cette correspondance étaient inconnues.

En 1970, Yōichirō Nambu, Holger Bech Nielsen, et Leonard Susskind présentèrent une interprétation physique de la formule d'Euler en représentant les forces nucléaires comme des cordes vibrantes à une dimension. Cependant, cette description basée sur les cordes de la force nucléaire forte aboutissait à de nombreuses prédictions en contradiction directe avec les données expérimentales. La communauté scientifique perdit rapidement son intérêt pour cette théorie et développa la chromodynamique quantique pour décrire correctement le comportement des hadrons. Ce modèle sera incorporé dans le modèle standard, basé sur les particules et leurs champs, qui décrit jusqu'à aujourd'hui (2010) l'ensemble des particules élémentaires observées.

En 1974 John Schwarz et Joël Scherk, et indépendamment Tamiaki Yoneya étudièrent les modèles de vibration de cordes décrivant les bosons, et découvrirent que leurs propriétés correspondaient exactement à celles du graviton, la particule hypothétique "messagère" de la force de gravitation. Schwarz et Scherk argumentèrent que la théorie des cordes n'avait pas été adoptée auparavant car les physiciens sous-estimaient sa portée. Ceci mena au développement de la théorie des cordes bosoniques, qui est toujours la première version enseignée à de nombreux étudiants. On espère désormais que la théorie des cordes ou l'une de ses descendantes fournira une compréhension complète de l'ensemble des interactions fondamentales, à savoir d'une part les deux forces nucléaire et la force électromagnétique qui sont décrites par le modèle standard et d'autre part la force de gravitation qui est actuellement bien décrite par la relativité générale. On parle ainsi de théorie du tout.

La théorie des cordes est formulée en termes de l'action de Polyakov, qui décrit comment les cordes se déplacent à travers l'espace et le temps. De même que des ressorts, les cordes possèdent une tension et veulent se contracter pour minimiser leur énergie potentielle, mais la conservation de l'énergie les empèche de disparaître et les fait osciller à la place. En appliquant les idées de la mécanique quantique aux cordes, il est possible de déduire différents modèles de vibration des cordes. A chacun de ces modèles correspond une particule différente. La masse de chaque particule et son mode d'interaction sont déterminés par la manière dont la corde vibre - ou, pour le voir d'une manière différente, par la "note" émise par la corde. L'ensemble des notes, chacune correspondant à un différent type de particule, est appelé le spectre de la théorie.

Les premiers modèles incluaient à la fois des cordes ouvertes, qui avaient deux extrêmités distinctes, et des cordes fermées, pour lesquels les extrêmités étaient jointes pour former une boucle complète. Les deux types de cordes se comportent de manière légèrement différente, donnant lieu à des spectres distincts. Toutes les théories modernes des cordes n'utilisent pas ces deux types ; certaines n'incluent que le modèle de cordes fermées.

Le tout premier modèle de théorie des cordes, la théorie des cordes bosoniques posait des problèmes. Le plus important était une instabilité fondamentale due à la présence d'un tachyon dans son spectre, dont on pensait qu'elle résultait d'une instabilité de l'espace-temps lui-même. Comme son nom l'indique, le spectre des particules contenait uniquement les bosons, ces particules comme le photon dont un des rôles est de transporter les interactions fondamentales. Si les bosons constituent un ingrédient critique de l'univers, ils n'en sont pas l'unique composant. La recherche d'un procédé par lequel la théorie des cordes pourrait inclure les fermions, qui constituent la matière ordinaire, dans son spectre mena à l'invention de la théorie des supercordes, incorporant la supersymétrie qui postule une relation entre les bosons et les fermions. Ces théories des cordes incluent des vibrations "fermioniques" difficiles à se représenter intuitivement ; plusieurs d'entre elles ont été élaborées.

Page générée en 0.206 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise