Neurosciences |
![]() |
Niveaux d'analyse |
Moléculaire • Synaptique • Neuronal • Réseau neuronal • Organique • Systémique |
Méthodes |
Imagerie cérébrale • Électrophysiologie • Lésion cérébrale • Intelligence artificielle |
Branches d'études |
Neuroanatomie • Neurophysiologie • Neuroendocrinologie • Psychophysiologie • Neurosciences cognitives • Neurosciences sociales • Neuropsychologie • |
Concepts majeurs |
Neurone • Potentiel d'action • Synapse • Neuromédiateur • Plasticité neuronale • Plasticité synaptique • Précablage • Réflexe • Récompense • Cognition • Modularité de l'esprit |
Chercheurs |
Ramón y Cajal • C.S. Sherrington • P. Broca • J. Olds • J. LeDoux • D.H. Hubel • T. Wiesel • E. Kandel • J.P. Changeux |
Champs d'application |
Neurologie • Neurochirurgie • Neuropsychologie • Psychiatrie • Neuropharmacologie • Chronobiologie • |
Voir aussi |
Le portail • Le projet • Catégorie Neurosciences |
L'imagerie cérébrale (dite aussi neuro-imagerie) désigne l'ensemble des techniques issues de l'imagerie médicale qui permettent d'observer le cerveau, en particulier lorsque qu'un individu exécute une tâche cognitive.
L'observation du cerveau par autopsie était imprécise et incomplète, du fait notamment de l'observation post mortem d'un organe figé, laquelle ne pouvait rendre compte du déplacement des tumeurs cérébrales à l'origine de troubles cognitifs, comme l'aphasie. Le développement des techniques d'imagerie médicale couplé aux méthodes de la psychologie cognitive et expérimentale (par exemple, la psycholinguistique) a permis d'observer in vivo l'activité électrique et les flux sanguins dans le cerveau, dont les variations permettent de déterminer les zones cérébrales sollicitées par différents processus cognitifs. Les outils de la neuroimagerie (IRM, tomographie à émission de positrons, électroencéphalographie, magnétoencéphalographie,...) ont ainsi largement participé aux progrès des sciences cognitives depuis les années 1990 (voire avant, dès les années 1950 pour l'électroencéphalographie), contribuant à ce qu'on a appelé la décennie du cerveau.
L'imagerie structurelle (dite aussi anatomique) cherche à identifier, localiser et mesurer les différentes parties de l'anatomie du système nerveux central. Dans la pratique médicale clinique, elle permet d'identifier la localisation et l'extension d'une lésion cérébrale dans une visée diagnostique et/ou d'intervention chirurgicale.
Dans le cadre de la recherche en neurosciences cognitives. L'imagerie structurelle apporte des éléments pour interpréter les observations comportementales en neuropsychologie. En déterminant à quelles lésions correspond un déficit cognitif donné, il est possible d'établir que la région cérébrale lésée intervient dans le mécanisme sous-jacent. Ainsi, c'est en observant, post mortem, que le cerveau d'un patient devenu incapable de parler à la suite d'un accident vasculaire cérébral présentait une zone détruite dans le lobe frontal gauche, que Paul Broca déduisit le rôle de cette région dans les processus de langage.
Plus récemment, avec l'augmentation de la précision des mesures, il est devenu possible de corréler la mesure du volume (ou de la densité de neurones) d'une région cérébrale avec des résultats comportementaux. Ainsi, une étude a montré qu'une structure cérébrale impliquée dans la mémoire spatiale, l'hippocampe (cerveau), était plus développée chez les chauffeurs de taxis londoniens que dans la moyenne de la population, et ce d'autant plus qu'ils conduisaient depuis longtemps.
L'imagerie fonctionnelle cherche à caractériser le cerveau en action. L'usage traditionnel de ces méthodes consiste à faire effectuer une tâche cognitive à un individu et à mesurer le signal produit par l'activité cérébrale. Suivant les techniques et les outils mathématiques employés, il est possible de retrouver, avec plus ou moins de précision, quelle région du cerveau était particulièrement active et à quel moment de la tâche cognitive.
L'IRMf partage avec le TEP l'avantage d'une bonne résolution spatiale, et offre en outre une bonne résolution temporelle puisque son usage ne repose pas sur la durée de vie d'un produit. Néanmoins, l'IRMf partage également les inconvénients du TEP : innocuité inconnue et méthode invasive, le patient devant être allongé et la machine produisant un bruit infernal.
L'EEG et la MEG ne sont pas invasives car elle ne contraigne que fort peu le sujet, l'application des électrodes étant indolore. Elles offrent également une bonne résolution temporelle. Néanmoins, la résolution spatiale de ces méthodes reste mal caractérisée.
Après apposition des électrodes, les sujets sont confrontés à des expériences de transgression sémantique et syntaxique. Dans le premier cas, une onde négative (appelée N400) est émise environ 400 ms après le stimulus transgressif correspondant à l'anomalie sémantique. Dans le second cas, une onde positive (appelée P600) est émise environ 600 ms après le stimulus correspondant à l'anomalie syntaxique.
Cela indique que l'activité sémantique précède l'activité syntaxique, du moins chez les sujets sains. Chez les patients aphasiques, l'onde N400 étant plus tardive et de moindre amplitude, leur accès à l'information sémantique serait plus lent.