Paradoxe du singe savant - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Et en mathématiques ?

On pourrait imaginer de gagner du temps dans le processus en ne produisant que des phrases bien formées. Cela est difficile pour une langue naturelle, mais facile en mathématiques, dans le cadre de la logique mathématique. On envisagea donc lors des premiers développements du calcul formel sur ordinateur de fournir des axiomes et des règles de déduction à une machine, le mathématicien n'ayant plus qu'à examiner chaque jour les listings et à publier les théorèmes du jour. Il va de soi que le problème est le même à une seule chose près : toutes les formules imprimées seront cette fois correctes, c’est-à-dire bien formées et de plus vraies (et fournies avec la démonstration).

En revanche, le problème du dépouillement de papier reste inchangé. De plus, au cours d'une conférence sur les fondements des mathématiques, Jean-Yves Girard fait la remarque suivante (selon lui, la logique formelle ressemble plus à un travail de bureaucrate qu'à un travail de singe savant) :

« La question qui se pose est la suivante : est-ce que les mathématiques sont une activité formelle ? Est-ce que les mathématiques sont une activité "bureaucratique" ? Est-ce qu'on aurait pu confier le théorème de Fermat à un groupe d'énarques ? Ils y seraient arrivés en 300 ans ? Bon c'est impossible parce qu'il faut des idées. »

Il faut en effet l'idée du théorème, aussi importante au moins que sa démonstration. Une machine peut fabriquer "au kilomètre" des énoncés mathématiquement tous vrais accompagnés de leur démonstration établie par ses soins. Néanmoins, dans ces millions d'énoncés, le fait d'en distinguer quelques uns pour en faire - et d'eux seuls - des théorèmes relève d'un vécu du mathématicien, qui aura reconnu un lien possible et éventuellement fécond avec des travaux d'autres branches du savoir comme la physique, la statistique, la biologie, etc. Les théorèmes spécifiques de Thalès et de Pythagore, par exemple, étaient liés à des besoins latents concernant l'architecture ou l'établissement d'un cadastre.

  • Voir aussi : Épistémologie

La levée du « paradoxe »

Une question peut à ce stade subsister dans l'esprit : peut-on réellement produire des œuvres littéraires avec ce système ? Il est clair qu'on ne fait que remplacer un problème par un autre plus grand : au lieu de composer une œuvre, il faut lire et tester des milliards de milliards de documents et arriver à déterminer lequel contient l'œuvre. La quantité d'information consommée dans le processus sera au moins aussi grande, et en ce sens ce paradoxe n'est pas dénué de similitude avec celui du démon de Maxwell, dont la physique crut quelques mois pouvoir espérer des miracles aussi.

Exprimé en termes plus simples, cela signifie que la complexité de retrouver une œuvre donnée de Shakespeare dans la bibliothèque de Babel sera très exactement la même que celle de recopier directement cette pièce à la main : la bibliothèque de Babel (ou le travail des singes) ne contient paradoxalement pas d'information. Ou, ce qui revient au même, c'est le contexte lié au vécu du récepteur, et lui seul, qui fait que tel « bruit » particulier devient pour lui une « information » (parce qu'il connaît la grammaire d'une langue, possède un vocabulaire et dispose d'un vécu lui permettant de conférer du sens à une suite de caractères qui en soi ne se distingue pas des autres (voir aussi Théorie d'Everett).

Paul Valéry avait exprimé une réserve similaire dans L'homme et la coquille (Variété III) : « le chiffre qui sort à la loterie ne peut avoir de sens pour moi, ne se distingue de tous les autres, que si je possède un billet qui le porte .»

Page générée en 0.090 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise