Physique statistique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction et généralités

Typiquement, à notre échelle, un système matériel à l'équilibre thermodynamique est décrit à l'aide d'un nombre restreint de paramètres dits macroscopiques caractérisant les valeurs de certaines grandeurs physiques macroscopiques ; par exemple, un volume de gaz à l'équilibre est caractérisé par sa densité μ, sa pression P, sa température T, et son volume V. La physique statistique établit des liens statistiques entre ces grandeurs physiques macroscopiques et d'autres grandeurs microscopiques caractérisant les constituants élémentaires (atomes ou molécules) du système matériel.

Cette procédure est utile, car il est en pratique impossible de suivre l'évolution des constituants individuels du gaz. Par exemple, un litre d'air contient environ 3×1022 molécules (un nombre de l'ordre du nombre d'Avogadro). Même s'il était possible de suivre l'évolution individuelles de chacune d'elles, cela ne donnerait pas d'information pertinente sur le système. Le but de la physique statistique est de définir les quantités macroscopiques pertinentes qui permettent de décrire un tel système composé d'un très grand nombre de particules, et les relations entre ces différentes quantités. Elle doit aussi relier ces quantités macroscopiques à des quantités d'origine microscopiques qui décrivent les constituants du système. Par exemple, la température d'un gaz parfait est une mesure de l'énergie cinétique totale des particules qui le composent.

Une des raisons qui permet un passage du microscopique au macroscopique est en fait le nombre gigantesque des constituants du système. Pour cette raison, on parle de l'énergie cinétique E totale des molécules d'un gaz, car les fluctuations statistiques ΔE d'une telle quantité (il est possible que l'énergie cinétique totale des molécules du gaz soit, dans une petite région, légèrement différente de la valeur moyenne attendue) sont limitées par la relation (issue de la loi de Poisson)

\frac{\Delta E}{E} \sim \frac{1}{\sqrt{N}},

N est le nombre de molécules du volume de gaz considéré. Même pour des petits volumes, par exemple de l'ordre de 1 mm3 pour un gaz à TPN, soit environ 3×1016 particules, les fluctuations de l'énergie cinétique totale sont inférieures à 10-8 et en pratique presque toujours négligeables.

Postulat fondamental

Énoncé

Le postulat fondamental de la physique statistique d'équilibre (aussi connu comme le postulat des probabilités a priori égales) est:

Étant donné un système isolé en équilibre, il se trouve avec probabilités égales dans chacun de ses micro-états accessibles.

Ce postulat est une hypothèse fondamentale en physique statistique : il signifie qu'un système n'a pas de préférence pour n'importe quel de ses microétats accessibles. Étant donnés Ω microétats à énergie donnée, la probabilité que le système se trouve à un microétat particulier est p = 1/Ω. Ce postulat, nécessaire, permet de conclure que pour un système à l'équilibre, l'état thermodynamique (le macroétat) qui peut résulter du plus grand nombre de microétats est aussi le macroétat le plus probable du système.

Par rapport aux postulats sous-tendant la théorie cinétique des gaz, il s'agit d'un saut dans l'abstraction qui permet toutes les généralisations. Cet énoncé remplace avantageusement les modèles microscopiques à la fois simplistes et pourtant lourdement calculatoires par des incertitudes statistiques. Le modèle s'applique a priori à tout système possédant un mécanisme de redistribution statistique de l'énergie au niveau microscopique.

Origine : l'hypothèse ergodique

Dans le cadre naissant de la théorie cinétique des gaz, Boltzmann a formulé en 1871 une hypothèse, connue aujourd'hui sous le nom d'hypothèse ergodique : « Le point représentatif d'un système hamiltonien invariant par translation dans le temps passe au cours du temps par chaque point de l'hypersurface d'énergie constante. »

Il a été prouvé en 1910 que cette hypothèse était fausse, mais on a depuis démontré que certains systèmes physiques vérifient l'hypothèse quasi-ergodique :

Le point représentatif d'un système hamiltonien invariant par translation dans le temps passe au cours du temps aussi près que l'on veut de chaque point de l'hypersurface d'énergie constante.

Cependant, en dépit de progrès très important réalisés en théorie ergodique et en théorie du chaos, l'utilisation de l'hypothèse quasi-ergodique pour justifier le postulat fondamental de la physique statistique reste à ce jour controversée.

Équiprobabilité et information

En théorie de l'information, l'information est l'opposée du logarithme de la probabilité : I = -\ln\ p.

Dans ce contexte, l'entropie est définie comme la moyenne de l'information contenue dans le système :

S\ = \ \langle \ I \ \rangle\ = \ -\sum_i \ p_i \ \ln p_i

C'est une fonction continue de plusieurs variables, dont on peut montrer qu'elle admet un maximum global lorsque tous les pi sont égaux. Ceci signifie qu'avec l'hypothèse d'équiprobabilité, S est maximale. On interprète cela en disant qu'on a alors un minimum d'information, ou encore un maximum d'incertitude, sur le système.

Par contre, quand l'un des évènements est certain, sa probabilité vaut 1 tandis que tous les autres pi sont nuls. On connait alors exactement la configuration du système et l'incertitude est nulle. Dans ce cas l'entropie admet sa valeur minimale, en l'occurrence 0.

Généralisations aux problèmes analogues

Les méthodes de description mathématique développées dans le cadre de la physique statistique ont trouvé des applications dans pratiquement tous les domaines de la physique moderne ou de la chimie, mais aussi en économie, dans les sciences humaines, etc.

Page générée en 0.226 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise