Propagateur de l'équation de Schrödinger - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le terme propagateur a été introduit en physique par Feynman en 1948 pour sa formulation de la mécanique quantique en intégrales de chemin, une nouvelle approche de la quantification centrée sur le Lagrangien, contrairement à la procédure habituelle de quantification canonique fondée sur le Hamiltonien.

Le propagateur, outil mathématique très commode, sera rapidement identifié par Dyson comme n'étant rien d'autre qu'une fonction de Green. Cette remarque permettra à Dyson de faire en 1948 le lien manquant entre la formulation abstraite de l'électrodynamique quantique développée par Schwinger, et celle, basée sur des diagrammes, inventée indépendamment par Feynman.

Propagateur

Introduction

Considérons une particule non relativiste de masse m à une dimension, dont l'opérateur Hamiltonien s'écrit :

\hat{H} \ = \ \frac{\hat{p}^2}{2m} \ + \ V(\hat{q})

En représentation de Schrödinger, cette particule est décrite par le ket | \psi(t) \rangle qui obéit à l'équation de Schrödinger :

i \hbar \ \frac{d | \psi(t) \rangle}{dt}  \ = \ \hat{H} \ | \psi(t) \rangle

Si l'on se donne à un instant initial t0 fixé une condition initiale | \psi(t_0) \rangle , et en supposant que l'opérateur \ \hat{H} est indépendant du temps, on peut écrire la solution de l'équation de Schrödinger aux instants ultérieurs t > t0 comme :

| \psi(t) \rangle \ = \ e^{-i\hat{H} (t-t_0) /\hbar} \ | \psi(t_0) \rangle

Projetons cette équation dans la représentation des positions :

 \langle q | \psi(t) \rangle \ = \ \langle q |e^{-i\hat{H} (t-t_0) /\hbar} \ | \psi(t_0) \rangle

et insérons la relation de fermeture dans le terme de droite :

1 \ = \ \int dq_0 \ | q_0 \rangle \ \langle q_0 |

il vient :

 \langle q | \psi(t) \rangle \ = \ \int dq_0 \ \langle q |e^{-i\hat{H} (t-t_0) /\hbar} \  | q_0 \rangle \ \langle q_0 | \psi(t_0) \rangle

Compte-tenu du fait que \langle q | \psi(t) \rangle =  \psi(q,t) , l'équation précédente s'écrit sous la forme :

 \psi(q,t) \ = \ \int dq_0 \ \langle q |e^{-i\hat{H} (t-t_0) /\hbar} |q_0 \rangle \  \psi(q_0,t_0)

Définition

On définit le propagateur de l'équation de Schrödinger par :

{K(q,t|q_0,t_0) \ = \ <q |e^{-i\hat{H} (t-t_0) /\hbar} |q_0 >}


de telle sorte que la fonction d'onde évolue selon l'équation intégrale :

 \psi(q,t) \ = \ \int dq_0 \ K(q,t|q_0,t_0) \  \psi(q_0,t_0)

Remarque

Comme ψ(q,t) est une solution de l'équation de Schrödinger, le propagateur est aussi une solution de cette équation :

i \hbar \ \frac{\partial K(q,t|q_0,t_0) }{\partial t}  \ = \ - \ \frac{\hbar^2}{2m} \ \Delta_q \ K(q,t|q_0,t_0) \ + \ V(q) \ K(q,t|q_0,t_0)

qui doit de plus vérifier la condition initiale :

\lim_{t \to t_0} K(q,t|q_0,t_0) \ = \ \delta(q-q_0)

Les mathématiciens parlent dans ce cas d'une solution élémentaire de l'équation de Schrödinger, les physiciens utilisant plutôt le nom de fonction de Green.

Expression du propagateur de la particule libre

Rappels sur la transformation de Fourier

On rappelle les relations :

 \hat{\psi}(p)  \ = \ \int \frac{dq}{\sqrt{2 \pi \hbar}} \ e^{\, - \, i p q/\hbar} \ \psi(q)
 \psi(q) \ = \ \int \frac{dp}{\sqrt{2 \pi \hbar}} \ e^{\, + \, i p q/\hbar} \ \hat{\psi}(p)

Avec les notations de Dirac, et en utilisant la relation de fermeture sur les impulsions :

1 \ = \ \int dp \ | p > \ < p |

la seconde relation s'écrit :

 < q | \psi > \ = \ \int \frac{dp}{\sqrt{2 \pi \hbar}} \ e^{\, + \, i p q/\hbar} \ <p | \psi > \ = \ \int dp \ < q | p > \ <p | \psi >

On tire la formule suivante :

 < q | p > \ = \ \frac{e^{\, + \, i p q/\hbar}}{\sqrt{2 \pi \hbar}} \

Expression du propagateur de la particule libre

Pour une particule libre sur la droite, l'opérateur Hamiltonien est indépendant de la position :

\hat{H} \ = \ \frac{\hat{p}^2}{2m}

Le propagateur, qu'on note dans ce cas K0, s'écrit alors :

 K_0 (q,t|q_0,t_0) \ = \ <q |e^{-i\hat{p}^2(t-t_0)/ (2m\hbar)} |q_0 >

Insérons alors deux fois la relation de fermeture pour les impulsions dans la définition du propagateur :

K_0 (q,t|q_0,t_0) \ = \ \int dp \int dp_0 \ <q |p> \ <p|e^{-i\hat{p}^2(t-t_0)/ (2m\hbar)} | p_0 > \ <p_0|q_0 >

Le ket | p0 > étant par définition un état propre de l'opérateur impulsion \hat{p} , on a :

\hat{p}\, | p_0 > \  = \ p_0 \, |p_0 >

et l'élément de matrice devient :

<p|e^{-i\hat{p}^2(t-t_0)/ (2m\hbar)} | p_0 > \ = \ e^{-ip_0^2(t-t_0)/ (2m\hbar)}  \ <p| p_0 >


Sachant que < p | p0 > = δ(pp0), on obtient pour le propagateur :

K_0(q,t|q_0,t_0) \ = \ \int dp \ <q |p> \ e^{-ip^2(t-t_0)/ (2m\hbar)}  \ <p|q_0 >


Compte-tenu de la formule démontrée précédemment avec la transformée de Fourier, il vient :

K_0(q,t|q_0,t_0) \ = \ \int dp \ \frac{e^{\, + \, i p q/\hbar}}{\sqrt{2 \pi \hbar}} \ \times \ e^{-ip^2(t-t_0)/ (2m\hbar)}  \ \times \ \frac{e^{\, - \, i p q_0/\hbar}}{\sqrt{2 \pi \hbar}}

qui se réécrit :

K_0(q,t|q_0,t_0) \ = \ \int \frac{dp}{2 \pi \hbar} \ \exp \left[ \,  \frac{i p (q-q_0)}{\hbar} \ - \ \frac{ip^2(t-t_0)}{2m\hbar}  \, \right]

L'argument de l'exponentielle peut se réécrire comme suit :

\frac{i p (q-q_0)}{\hbar} \ - \ \frac{ip^2(t-t_0)}{2m\hbar} \ = \   - \ \frac{i (t-t_0)}{2m\hbar}  \ \times \ \left[ \ p^2 \ - \ \frac{2mp(q-q_0)}{(t-t_0)} \ \right]

Or le crochet est le début d'un carré parfait :

p^2 \ - \ \frac{2mp(q-q_0)}{(t-t_0)}  \ = \  \left[ \ p \ - \ \frac{m(q-q_0)}{(t-t_0)} \ \right]^2 \ - \ \frac{m^2(q-q_0)^2}{(t-t_0)^2}

donc l'argument de l'exponentielle devient :

- \ \frac{i (t-t_0)}{2m\hbar}  \ \times \ \left[ \ \left( \ p \ - \ \frac{m(q-q_0)}{(t-t_0)} \ \right)^2 \ - \ \frac{m^2(q-q_0)^2}{(t-t_0)^2} \right]
= \ - \ \frac{i (t-t_0)}{2m\hbar} \ \left( \ p \ - \ \frac{m(q-q_0)}{(t-t_0)} \ \right)^2 \ + \ \frac{i m(q-q_0)^2}{2 \hbar (t-t_0)}

Le dernier terme étant indépendant de l'impulsion, il sort de l'intégrale et le propagateur s'écrit :

K_0(q,t|q_0,t_0) \ = \ \exp \left( \frac{i m(q-q_0)^2}{2 \hbar (t-t_0)}  \right) \ \times \ \int \frac{dp}{2 \pi \hbar} \ \exp \left[ \, - \ \frac{i (t-t_0)}{2m\hbar} \ \left( \ p \ - \ \frac{m(q-q_0)}{(t-t_0)} \ \right)^2  \, \right]

On fait un changement de variable sur les impulsions, les autres paramètres étant fixés :

p \ \longrightarrow  \ k \ = \ p \ - \ \frac{m(q-q_0)}{(t-t_0)} \ \Longrightarrow \ dp \ \longrightarrow  \ dk \ = \ dp

ce qui donne :

K_0(q,t|q_0,t_0) \ = \ \frac{1}{2 \pi \hbar} \ \exp \left( \frac{i m(q-q_0)^2}{2 \hbar (t-t_0)}  \right) \ \times \ \int dk \ \exp \left[ \, - \ \frac{i (t-t_0) k^2}{2m\hbar} \, \right]

Il subsiste une intégrale Gaussienne qui se calcule exactement :

\int dk \ e^{- \alpha k^2} \ = \ \sqrt{\frac{\pi}{\alpha}}

On en déduit que :

K_0(q,t|q_0,t_0) \ = \ \frac{1}{2 \pi \hbar} \ \sqrt{\frac{2\pi m \hbar}{i(t-t_0)}} \ \exp \left( \frac{ + i m(q-q_0)^2}{2 \hbar (t-t_0)}  \right)

d'où l'expression finale du propagateur libre :

K_0(q,t|q_0,t_0) \ = \ \sqrt{\frac{m}{2 \pi i  \hbar (t-t_0)}} \ \exp \left( \frac{ + i m(q-q_0)^2}{2 \hbar (t-t_0)}  \right)

Remarque

Pour une particule libre dans un espace Euclidien à d dimensions, on pourrait démontrer de façon analogue que :

Page générée en 0.194 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise