La raie zéro-phonon et bande satellite phonon constituent conjointement le profil spectral de molécules individuelles absorbant ou émettant de la lumière (chromophores) inclus dans une matrice solide transparente. Lorsque la matrice hôte contient de nombreux chromophores, chacun d'entre eux contribuera à la raie zéro-phonon et à la bande satellite phonon des spectres. Le spectre issu d'un ensemble de chromophores est dit élargi de manière inhomogène, chaque chromophore étant entouré par un environnement différent modifiant l'énergie requise pour une transition électronique. Dans une distribution inhomogène de chromophores, les positions de la raie zéro-phonon individuelle et de la bande satellite phonon sont donc décalés et se chevauchent.
La figure 1 illustre le profil typique de la raie pour des transitions électroniques de chromophores individuels dans une matrice solide. La raie zéro-phonon est localisé à la fréquence ω’ déterminée par la différence intrinsèque dans les niveaux d'énergie entre les états fondamental et excités ainsi que par l'environnement local. La raie satellite phonon est décalée vers une fréquence plus élevée en absorption et plus basse en fluorescence. L'écart de fréquence Δ entre la raie zéro-phonon et le pic de la bande satellite phonon est déterminée par le principe Franck-Condon.
La distribution de l'intensité entre la raie zéro-phonon et la bande satellite phonon est fortement dépendante de la température. A température ambiante, il y a assez d'énergie thermique pour exciter de nombreux phonons et la probabilité de transition zéro-phonon est quasi-nulle. Pour des chromophores organiques dans des matrices organiques, la probabilité d'une transition électronique zéro-phonon ne devient réellement possible qu'en dessous de 40 K, mais dépend également de l'intensité du couplage entre le chromophore et la matrice hôte.
La transition entre état fondamental et état excité est basée sur le principe Franck-Condon indiquant que la transition électronique est très rapide comparée au mouvement dans le réseau. Les transitions énergétiques peuvent être symbolisées par des flèches verticales entre l'état fondamental et l'état excité, le tout sans déplacement le long des coordonnées de configuration durant la transition. La figure 2 est un diagramme d'énergie pour l'interprétation de l'absorption et de l'émission avec et sans phonons selon la coordonnée configurationnelle qi. Les transitions énergétiques ont pour origine le niveau d'énergie phononique le plus bas des états électroniques. Comme montré dans la figure, le plus grand recouvrement de fonction d'onde (et donc la plus forte probabilité de transition) se produit quand l'énergie de phonon est égale à la différence d'énergie entre les deux états électroniques (E1 – E0) plus quatre quanta d'énergie vibrationnelle du mode de réseau i ( ). Cette transition à quatre phonons se reflète dans l'émission lorsque l'état excité se désexcite vers son niveau de vibration de réseau de point zéro par un processus non radiatif, et à partir de là, vers son état fondamental par une émission de photon. La transition zéro-phonon est décrite comme ayant un recouvrement de fonction d'onde moins important et ainsi une probabilité de transition plus faible.
En plus du postulat Franck-Condon, trois autres approximations sont couramment utilisées et sont implicites dans les figures. La première est que le mode vibratoire de réseau est bien décrit par l'oscillateur harmonique quantique. Cette approximation est perceptibe dans la forme parabolique des puits de potentiels de la figure 2, et dans l'espacement égal entre niveaux d'énergie de phonon. La seconde approximation est que seul la vibration de réseau la plus faible (de point zéro) est excitée. On appelle cela l'approximation de basse température, et cela signifie que les transitions électroniques ne proviennent pas des niveaux de phonon les plus élevés. La troisième approximation est que l'interaction entre le chromophore et le réseau est la même dans l'état fondamental et l'état excité. Le potentiel d'oscillateur harmonique est égal dans les deux cas. Cette approximation, appelée couplage linéaire, est représentée dans la figure 2 par les potentiels paraboliques de même forme et les niveaux d'énergie de phonon espacés de manière égale dans les états fondamental et excité.
L'intensité d'une transition zéro-phonon provient de la superposition de l'ensemble des modes de réseau. Chaque mode de réseau m possède une fréquence de vibration Ωm caractéristique qui conduit à une différence d'énergie entre phonons . Lorsque les probabilités de transition de tous les modes sont additionnées, les transitions zéro-phonon s'ajoutent toujours à l'origine électronique (E1 – E0), alors que les transitions avec phonons contribuent à la distribution des énergies. La figure 3 illustre la superposition des probabilités de transition de plusieurs modes de réseau. Les contributions des transitions phonons de l'ensemble des modes de réseau constitue la bande satellite phonon.
La séparation des fréquences entre les maxima des bandes satellites d'absorption et de fluorescence traduit la contribution des phonons au déplacement de Stokes.