Repère de Frenet - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Courbe gauche

Introduction du repère de Frenet

On considère cette fois une courbe de l'espace euclidien orienté à trois dimensions, paramétrée par l'abscisse curviligne f(s)=(x(s),y(s),z(s)). Le repère de Frenet au point de paramètre s, souvent appelé aussi trièdre de Frenet est défini par trois vecteurs unitaires T, N, B formant une base orthonormale directe, et en prenant encore comme origine le point de paramètre s.

Le vecteur T, vecteur tangent unitaire, est introduit comme dans le plan.

T=\frac{df}{ds}

On suppose de nouveau l'arc birégulier. Alors le vecteur \frac{d^2f}{ds^2}=\frac{dT}{ds} est orthogonal au vecteur tangent unitaire, et non nul. On définit cette fois le vecteur normal unitaire et la courbure simultanément en posant

\frac{dT}{ds}=\gamma . N \qquad \hbox{avec } \gamma >0

On complète enfin en une base orthonormale directe en prenant pour troisième vecteur de base, appelé vecteur binormal

B= T\wedge N

Cette fois la description géométrique est la suivante : le vecteur T dirige la tangente à la courbe. Le couple (T,N) engendre un plan appelé plan osculateur à la courbe. Ce plan contient la tangente et le cercle osculateur à la courbe. Par la convention de positivité de la courbure, le vecteur N est cette fois dirigé vers le centre de courbure. Les formules donnant vitesse et accélération dans la base de Frenet sont identiques à celles obtenues pour une courbe plane.

Formules de Frenet

Le vecteur normal unitaire, le vecteur binormal sont par construction des fonctions dérivables de s. En outre, comme T, N, B constituent une base orthonormale pour toute valeur de s les vecteurs dérivés vérifient un certain nombre de relations. Finalement, il existe un coefficient appelé torsion au point de paramètre s tel que les relations suivantes soient vérifiées

\frac{dN}{ds}=-\gamma T - \tau B \qquad \frac{dB}{ds}= \tau N

En ajoutant la formule de dérivation de T indiquée au-dessus, on obtient un ensemble de trois formules appelées formules de Frenet pour les courbes gauches. On peut les résumer symboliquement en utilisant une matrice

 \frac{d}{ds}\begin{pmatrix} T\\N\\B \end{pmatrix} = \begin{pmatrix} 0 & \gamma & 0 \\ -\gamma & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix} \begin{pmatrix} T\\N\\B \end{pmatrix}

L'orthonormalité des vecteurs de la base de Frenet se traduit par l'antisymétrie de la matrice : il s'agit en fait ici d'un résultat général sur les bases mobiles.

La torsion

Le facteur τ a néanmoins une interprétation géométrique : il s'agit de la tendance à s'écarter du plan osculateur (de même que la courbure mesure la tendance à s'écarter de la tangente). La torsion est donc ce qui fait que la courbe est non plane. Il convient de voir dans ces « corrections successives » du comportement de la courbe, courbure et torsion, les termes successifs d'un développement limité au point de paramètre s.

On peut donner l'expression de la courbure et de la torsion, pour un paramétrage quelconque f(t)

\gamma =\frac{\|f'\wedge f''\|}{\|f'\|^3}\qquad \tau = \frac{[f',f'',f''']}{\|f'\wedge f''\|^2}

où le crochet désigne le produit mixte.

Page générée en 0.085 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise