Spectroscopie rotationnelle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications

La spectroscopie rotationnelle est utilisée fréquemment en chimie physique afin de déterminer la structure des petites molécules (comme l'ozone, le méthanol ou l'eau) avec une haute précision. Les autres techniques « classiques » comme la diffractométrie de rayons X ne sont pas satisfaisantes pour ces molécules (particulièrement en phase gazeuse) et ne sont pas assez précises. Cependant, la spectroscopie rotationnelle n'est pas pertinente dans la détermination de molécules de tailles plus importantes, comme les protéines.

La spectroscopie micro-onde est l'un des principaux moyens par lesquels les constituants de l'univers sont déterminés depuis la Terre. Elle est particulièrement utile pour la détection des molécules dans le milieu interstellaire. Ainsi, l'une des découvertes les plus surprenantes de la chimie interstellaire fut la découverte de molécules à longues chaines carbonées dans ce milieu. C'est dans la perspective de trouver ce type de molécules en laboratoire qu'Harold Kroto vint dans le laboratoire de Richard Smalley et Robert Curl, où il était possible de vaporiser du carbone dans des conditions d'énergies très importantes. Cette expérience collaborative conduisit à la découverte du C60 qui leur valut le prix Nobel de chimie en 1996.

Détermination expérimentale des spectres

La spectroscopie infrarouge à transformée de Fourier (FTIR) peut être utilisée afin d'étudier les spectres de rotation expérimentaux. Les spectres à ces longueurs d'ondes présentent de manière typique de l'excitation rovibrationnelle, c'est-à-dire un mode à la fois vibrationnel et rotationnel pour une molécule.

Traditionnellement, les spectres micro-ondes sont obtenus par un procédé simple dans lequel un gaz sous faible pression est introduit dans un guide d'onde entre une source micro-onde (de fréquence variable) et un détecteur micro-onde. Le spectre est obtenu par modification de la fréquence de la source et détection simultanée de la variation d'intensité de la radiation transmise. Ce dispositif expérimental recèle une difficulté majeure liée à la propagation de l'onde micrométrique dans le guide d'onde. La taille physique du guide restreint la fréquence de radiation pouvant être transmise. Pour une taille de guide donnée (comme pour une bande X) il y a une fréquence de coupure, et les micro-ondes aux petites fréquences ( longueurs d'ondes les plus importantes) ne peuvent être propagées. De plus, lorsque la fréquence croît, des modes supplémentaires de propagation deviennent possibles, correspondant aux différentes vitesses de la radiation se propageant dans le guide d'onde (cela peut être comparé à un rebond de l'onde dans le guide, avec différents angles de réflexion). Le résultat final de ces considérations est que chaque taille de guide d'onde est utile seulement sur un intervalle étroit de fréquences et doit être remplacé par un guide plus adapté une fois les fréquences limites dépassées.

Page générée en 0.102 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise