Théorie de la complexité
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La théorie de la complexité s'intéresse à l'étude formelle de la difficulté des problèmes en informatique. Elle se distingue de la théorie de la calculabilité qui s'attache à savoir si un problème peut être résolu par un ordinateur (Un ordinateur est une machine dotée d'une unité de traitement lui permettant d'exécuter des programmes enregistrés. C'est un ensemble de...). La théorie de la complexité (La théorie de la complexité s'intéresse à l'étude formelle de la difficulté des problèmes en informatique. Elle se distingue de la théorie de la calculabilité qui s'attache...) se concentre donc sur les problèmes qui peuvent effectivement être résolus, la question étant de savoir s'ils peuvent être résolus efficacement ou pas en se basant sur une estimation (théorique) des temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) de calcul et des besoins en mémoire informatique (Depuis les débuts de l'électricité les phénomènes électriques étant généralement très rapides à l'échelle humaine, les ingénieurs ont cherché à conserver certaines...).

Généralités

Machine déterministe et machine non déterministe

Une machine déterministe est le modèle formel d'une machine telle que nous les connaissons (nos ordinateurs sont des machines déterministes). Les deux modèles les plus utilisés en informatique (L´informatique - contraction d´information et automatique - est le domaine d'activité scientifique, technique et industriel en rapport avec le traitement automatique de l'information par des...) théorique sont :

  • La machine de Turing
  • La machine RAM (Random access machine)

Les machines déterministes font toujours un seul calcul à la fois. Ce calcul est constitué d'étapes élémentaires; à chacune de ces étapes, pour un état donné de la mémoire (D'une manière générale, la mémoire est le stockage de l'information. C'est aussi le souvenir d'une information.) de la machine, l'action élémentaire effectuée sera toujours la même. Pour la suite, on pourra imaginer sans perte de généralité qu'une machine de Turing déterministe correspond à l'ordinateur favori du lecteur, programmé dans un langage impératif quelconque.

Une machine de Turing non-déterministe est une variante purement théorique des machines de Turing: on ne peut pas construire de telle machine. À chaque étape de son calcul, cette machine peut effectuer un choix non-déterministe: elle a le choix entre plusieurs actions, et elle en effectue une. Si l'un des choix l'amène à accepter l'entrée, on considère qu'elle a fait ce choix-là. En quelque sorte, elle devine toujours juste. Une autre manière de voir leur fonctionnement est de considérer qu'à chaque choix non-déterministe, elles se dédoublent, les clones poursuivent le calcul en parallèle suivant les branches du choix. Si l'un des clones accepte l'entrée, on dit que la machine accepte l'entrée.

Il semblerait donc naturel de penser que les machines de Turing non-déterministes sont beaucoup plus puissantes que les machines de Turing déterministes, autrement dit qu'elles peuvent résoudre en un temps raisonnable des problèmes que les machines ordinaires ne savent pas résoudre à moins de prendre des années.

L'Ordinateur à ADN est un cas particulier de machines non-déterministes, puisqu'il est capable de traiter un calcul en temps constant quelle que soit la taille des données. Notons toutefois que la difficulté est ici transposée en termes de réalisabilité de la machine, qui nécessite des quantités exponentielles d'ADN en fonction de la taille des données.

Complexité (La complexité est une notion utilisée en philosophie, épistémologie (par exemple par Anthony Wilden ou Edgar Morin), en physique, en biologie (par exemple par Henri Atlan), en sociologie, en informatique ou en...) en temps et en espace

On désigne par n la taille de la donnée (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un événement, etc.). On peut prendre quelques exemples :

  • La donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) d'un graphe (Le mot graphe possède plusieurs significations. Il est notamment employé :) à s sommets et n arêtes est de taille \complement ^2  _s : il y a \complement ^2  _s arêtes possibles dans un tel graphe, et pour chacune, on doit utiliser un bit pour dire si elle est effectivement présente dans le graphe. On peut par exemple choisir une représentation matricielle (il y aura \complement ^2  _s cellules dans la matrice à stocker et chacune vaudra 0 ou 1).
  • la taille d'un vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un exemple de vecteur, à...) d'éléments à trier.

Pour les machines déterministes, on définit la classe TIME(t(n)) des problèmes qui peuvent être résolus en temps t(n). C'est-à-dire pour lesquels il existe au moins un algorithme sur machine déterministe résolvant le problème en temps t(n) (le temps étant le nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de transitions sur machine de Turing ou le nombre d’opérations sur machine RAM).

  • TIME(t(n)) = { L | L peut être décidé en temps t(n) par une machine déterministe }

Pour les machines non déterministes, on définit la classe NTIME(t(n)) des problèmes qui peuvent être résolus en temps t(n).

  • NTIME(t(n)) = { L | L peut être décidé en temps t(n) par une machine non-déterministe }

La complexité en espace évalue l'espace mémoire utilisé en fonction de la taille des données ; elle est définie de manière analogue :

  • SPACE(s(n)) = { L | L peut être décidé par une machine déterministe en utilisant au plus s(n) cellules de mémoire}
  • NSPACE(s(n)) = { L | L peut être décidé par une machine non-déterministe en utilisant au plus s(n) cellules de mémoire}

Le problème du codage (De façon générale un codage permet de passer d'une représentation des données vers une autre.)

Le codage influence la complexité des problèmes. Il est bon de se rappeler que les données sur lesquelles travaillent les algorithmes sont nécessairement stockées en mémoire (on parle ici de la mémoire de l'ordinateur, mais aussi de la bande de la machine de Turing par exemple).

Si le codage d'une donnée est exponentiel par rapport à la taille de la donnée initiale, l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) des complexités des algorithmes sera sans doute caché par la complexité du codage : il faut par exemple s'interdire de coder le résultat dans l'entrée...

On ne s'intéressera ici qu'aux codages raisonnables.

Problème de décision (En logique mathématique, on appelle problème de la décision le fait de déterminer de façon mécanique, par un algorithme, si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive...)

Chaque problème informatique peut se réduire à un problème de décision, c’est-à-dire un problème formulé comme une question dont la réponse est Oui ou Non, plutôt que par exemple la taille du plus court chemin est 42. Un problème qui n'est pas formulé de cette manière peut être très simplement transformé en un problème de décision équivalent. Le problème du voyageur de commerce, qui cherche, dans un graphe, à trouver la taille du cycle le plus court passant une fois par chaque sommet, peut s'énoncer en un problème de décision ainsi : Existe-t-il un cycle passant une et une seule fois par chaque sommet tel que la somme des coûts des arcs utilisés soit inférieure à B, avec B \in \mathbb{N}. Ce problème est équivalent au problème du voyageur de commerce au sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du...) où si l'on sait résoudre efficacement l'un, on sait aussi résoudre efficacement l'autre.

Classes de complexité

La théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou...) de la complexité repose sur la définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) de classes de complexité qui permettent de classer les problèmes en fonction de la complexité des algorithmes qui existent pour les résoudre.

Classe L

Un problème de décision qui peut être résolu par un algorithme déterministe en espace logarithmique par rapport à la taille de l'instance est dans L.

Classe NL

Cette classe s'apparente à la précédente mais pour un algorithme non-déterministe.

Classe P

Un problème de décision est dans P s'il peut être décidé par un algorithme déterministe en un temps polynomial par rapport à la taille de l'instance. On qualifie alors le problème de polynomial.

Prenons par exemple le problème de la connexité dans un graphe. Étant donné un graphe à s sommets, il s'agit de savoir si toutes les paires de sommets sont reliées par un chemin. Pour le résoudre, on dispose de l'algorithme de parcours en profondeur qui va construire un arbre (Un arbre est une plante terrestre capable de se développer par elle-même en hauteur, en général au delà de sept mètres. Les arbres acquièrent une structure rigide composée d'un tronc qui...) couvrant du graphe à partir d'un sommet. Si cet arbre contient tous les sommets du graphe, alors le graphe est connexe. Le temps nécessaire pour construire cet arbre est au plus s2, donc le problème est bien dans la classe P.

Les problèmes dans P correspondent en fait à tous les problèmes facilement solubles.

Classe NP

Un problème NP est Non-déterministe Polynomial (et non pas Non polynomial, erreur très courante).

La classe NP réunit les problèmes de décision pour lesquels la réponse oui peut être décidée par un algorithme non-déterministe en un temps polynomial par rapport à la taille de l'instance.

De façon équivalente, c'est la classe des problèmes qui admettent un algorithme dans P qui, étant donné une solution du problème NP (un certificat), est capable de répondre oui ou non.

Intuitivement, les problèmes dans NP sont tous les problèmes qui peuvent être résolus en énumérant l'ensemble des solutions possibles et en les testant avec un algorithme polynomial.

Par exemple, la recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques....) de cycle hamiltonien dans un graphe peut se faire avec deux algorithmes :

  • le premier génère l'ensemble des cycles (ce qui est exponentiel) ;
  • le second teste les solutions (en temps polynomial).

Classe Co-NP (Complémentaire de NP)

C'est le nom parfois donné pour l'équivalent de la classe NP, mais avec la réponse non.

Classe PSPACE

Elle regroupe les problèmes décidables par un algorithme déterministe en espace polynomial par rapport à la taille de son instance.

Classe NSPACE ou NPSPACE

Elle réunit les problèmes décidables par un algorithme non-déterministe en espace polynomial par rapport à la taille de son instance.

Classe LOGSPACE

Classe EXPTIME

Elle rassemble les problèmes décidables par un algorithme déterministe en temps exponentiel par rapport à la taille de son instance.

Propriétés

On a les inclusions :

  • P \subset NP, et symétriquement P \subset Co-NP
  • NP \subset PSPACE = NPSPACE, et Co-NP \subset PSPACE.

En effet, un problème polynomial peut se résoudre en générant une solution et en la testant avec un algorithme polynomial. Tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) problème dans P est aussi dans NP.

La recherche travaille activement à déterminer si NP \subset P (concluant à P = NP) ou si, au contraire P \ne NP (voir le problème ouvert P = NP).

Problème C-Complet

Soit C une classe de complexité (La théorie de la complexité s'intéresse à l'étude formelle de la difficulté des problèmes en informatique. Elle se distingue de la théorie de la calculabilité qui s'attache à savoir si un problème peut être résolu par un ordinateur....) (comme P, NP, etc.). On dit qu'un problème est C-complet si

  • il est dans C, et
  • il est C-difficile (on utilise parfois la traduction incorrecte C-dur).

Un problème est C-difficile si ce problème est au moins aussi dur que tous les problèmes dans C. Formellement on définit une notion de réduction : Soient Π et Π' deux problèmes ; Une réduction de Π' à Π est un algorithme transformant toute instance de Π' en une instance de Π. Ainsi, si l'on a un algorithme pour résoudre Π, on sait aussi résoudre Π'. Π est donc au moins aussi difficile à résoudre que Π'.

Π est alors C-difficile si pour tout problème Π' de C, Π' se réduit à Π. Quand on parle de problèmes NP-difficiles on s'autorise uniquement des réductions dans P, c'est-à-dire que l'algorithme qui calcule le passage d'une instance de Π' à une instance de Π est polynomial (voir Réduction polynomiale). Quand on parle de problèmes P-difficiles on s'autorise uniquement des réductions dans LOGSPACE.

Réduction de problèmes

Pour montrer qu'un problème Π est C-difficile pour une classe C donnée, il y a deux façons de procéder: montrer que tout problème de C se réduit à Π, ou bien il suffit de montrer qu’un problème C-difficile se réduit à Π. C'est cette deuxième méthode, plus facile, qui est utilisée dès que l'on dispose d'au moins un problème C-complet.

Transformation de problème

La réduction la plus simple (ce n'est d'ailleurs pas vraiment une réduction) consiste simplement à transformer le problème à classer en un problème déjà classé.

Par exemple, démontrons ici que le problème de la recherche de cycle hamiltonien dans un graphe orienté est NP-Complet.

  • Le problème est dans NP : On peut trouver de façon évidente un algorithme pour le résoudre avec une machine non-déterministe, par exemple en énonçant tous les cycles puis en sélectionnant le plus court.
  • Nous disposons du problème de la recherche de cycle hamiltonien pour les graphes non-orientés. Un graphe non-orienté peut se transformer en un graphe orienté en " doublant " chaque arête de manière à obtenir, pour chaque paire (On dit qu'un ensemble E est une paire lorsqu'il est formé de deux éléments distincts a et b, et il s'écrit alors :) de nœuds adjacents, des chemins dans les deux sens. Il est donc possible de ramener le problème connu, NP-difficile, au problème que nous voulons classer. Le nouveau problème est donc NP-difficile.

Le problème étant dans NP et NP-difficile, il est NP-complet.

Réduction polynomiale (Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une...)

Voir l'article complet réduction polynomiale.

Théorème (Un théorème est une proposition qui peut être mathématiquement démontrée, c'est-à-dire une assertion qui peut être établie comme vraie au travers d'un raisonnement...) de Cook

Les problèmes sont classés de façon incrémentale, la classe d'un nouveau problème étant déduite de la classe d'un ancien problème.

L'établissement d'un " premier " problème NP-complet pour classer tous les autres s'est toutefois avéré nécessaire : Ainsi le théorème de Cook (de Stephen Cook) classe le problème SAT comme NP-Complet.

Problème NP-Complet

Les problèmes complets les plus étudiés sont les problèmes NP-complets. La classe de complexité étant par définition réservée à des problèmes de décisions, on parlera de problème NP-difficile pour les problèmes d'optimisation sachant que - pour ces problèmes d'optimisation - on peut construire facilement un problème qui lui est associé et est dans NP et qui est donc NP-complet.

De manière intuitive, dire qu'un problème peut être décidé à l'aide d'un algorithme non-déterministe polynomial signifie qu'il est facile, pour une solution donnée, de vérifier en un temps polynomial si celle-ci répond au problème pour une instance donnée (à l'aide d'un certificat); mais que le nombre de solutions à tester pour résoudre le problème est exponentiel par rapport à la taille de l'instance.

Le non-déterminisme permet de masquer la taille exponentielle (La fonction exponentielle est l'une des applications les plus importantes en analyse, ou plus généralement en mathématiques et dans ses domaines d'applications. Il existe...) des solutions à tester tout en permettant à l'algorithme de rester polynomial.

Problème NP-Complets célèbres 
  • Problème SAT et variante 3SAT (mais 2SAT est polynomial) ; notons qu'il existe des logiciels (dits SAT solvers) spécialisés dans la résolution performante de problèmes SAT ;
  • Problème du voyageur de commerce
  • Problème du cycle hamiltonien
  • Problème de la clique ( En théorie des graphes, dans les ouvrages de référence, une clique est un ensemble de sommets deux-à-deux adjacents. Dans les armées, une clique désigne également une fanfare ou une musique militaire. Dans un régiment,...) maximum
  • Problèmes de colorations de graphes
  • Problème d'ensemble dominant dans un graphe
  • Problème de couverture de sommets dans un graphe

Bien que moins étudiés, les problèmes complets pour les autres classes ne sont pas moins intéressants

  • Le problème Reach (ou Accessibilité) qui consiste à savoir s’il existe un chemin entre deux sommets d'un graphe est NL-complet
  • Le problème Circuit Value (et monotone Circuit Value : le même mais sans négation) sont des problèmes P-complets
  • Le problème QBF (SAT avec des quantificateurs) est PSPACE-complet

Remarque : tous les problèmes de la classe L sont L-complets vu que la notion de réduction est trop vague (Une vague est un mouvement oscillatoire de la surface d'un océan, d'une mer ou d'un lac. Les vagues sont générées par le vent et ont une...). En effet la fonction qui doit transformer un instance d'un problème à l'autre doit se calculer en espace logarithmique.

Listes

  • 21 problèmes NP-complets de Karp
  • Liste de problèmes NP-complets

Le problème ouvert P=NP

On a trivialement \mbox{P} \subseteq \mbox{NP} car un algorithme déterministe est un algorithme non déterministe particulier. En revanche la réciproque : \mbox{NP} \subseteq \mbox{P}, que l'on résume généralement à P = NP du fait de la trivialité de l'autre inclusion, est l'un des problèmes ouverts les plus fondamentaux et intéressants en informatique théorique. Cette question a été posée en 1970 pour la première fois ; celui qui arrivera à décider si P et NP sont différents ou égaux recevra le prix Clay (plus de 1 000 000 $).

Le problème P = NP revient à savoir si on peut résoudre un problème NP-Complet avec un algorithme polynomial. Les problèmes étant tous classés les uns à partir des autres — un problème est NP-Complet si l'on peut réduire un problème NP-Complet connu en ce problème —, faire tomber un seul de ces problèmes dans la classe P fait tomber l'ensemble de la classe NP, ces problèmes étant massivement utilisés, en raison de leur difficulté, par l'industrie, notamment en cryptographie (La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou...) — cf. la factorisation en nombres premiers). Ceci fait qu'on conjecture (En mathématiques, une conjecture est une assertion qui a été proposée comme vraie, mais que personne n'a encore pu démontrer ou réfuter.) cependant que les problèmes NP-complets ne sont pas solubles en un temps polynomial. À partir de là plusieurs approches sont tentées :

  • Des algorithmes d'approximation (Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore...) permettent de trouver des solutions approchées de l'optimum en un temps raisonnable pour un certain nombre de programmes. Dans le cas d'un problème d'optimisation on trouve généralement une réponse correcte, sans savoir s'il s'agit de la meilleure solution ;
  • Des algorithmes stochastiques : en utilisant des nombres aléatoires on peut "forcer" un algorithme à ne pas utiliser les cas les moins favorables, l'utilisateur devant préciser une probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de grande importance donnant lieu à...) maximale admise que l'algorithme fournisse un résultat erroné. Citons notamment comme application des algorithmes de test de primalité en temps polynomial en la taille du nombre à tester. A noter qu'un algorithme polynomial non stochastique a été proposé pour ce problème en août 2002 par Agrawal, Kayal et Saxena ;
  • Des heuristiques permettent d'obtenir des solutions généralement bonnes mais non exactes en un temps de calcul modéré ;
  • Des algorithmes par séparation et évaluation (Un algorithme par séparation et évaluation, également appelé selon le terme anglo-saxon branch and bound, est une méthode générique de résolution de...) permettent de trouver la ou les solutions exactes. Le temps de calcul n'est bien sûr pas borné polynomialement mais, pour certaines classes de problèmes, il peut rester modéré pour des instances relativement grandes ;
  • On peut restreindre la classe des problèmes d'entrée à une sous-classe suffisante, mais plus facile à résoudre.

Si ces approches échouent, le problème est non soluble en pratique dans l'état actuel des connaissances.

Pour le cas de L et NL, on ne sait pas non plus si L = NL. Mais cette question est moins primordiale car \mbox{L} \subset \mbox{NL} \subset \mbox{P} \subset \mbox{NP}. De fait, les problèmes dans L et dans NL sont solubles efficacement.

Inversement on sait que PSPACE = NPSPACE. Par contre \mbox{NP} \subset \mbox{PSPACE}. Donc, avant de résoudre NP = PSPACE, il faut résoudre P = NP.

Pour résumer, on a \mbox{L} \subset \mbox{NL} \subset \mbox{P} \subset \mbox{NP} \subset \mbox{PSPACE} = \mbox{NPSPACE}. On sait de plus que NL est strictement inclus dans PSPACE. Donc deux classes au moins entre NL et PSPACE ne sont pas égales.

Modèles de calcul

Ces théorèmes ont été établis grâce au modèle des machines de Turing. Mais d'autres modèles sont utilisés en complexité, dont :

  • les fonctions récursives dues à Kleene
  • les automates cellulaires
  • les machines à registres (RAM)
  • le lambda-calcul (Le lambda-calcul (ou λ-calcul) est un langage de programmation théorique inventé par Alonzo Church dans les années 1930. Ce langage a été le premier utilisé pour définir et...)

On sait que tous ces modèles sont équivalents : tout ce qu'un modèle permet de calculer est calculable par un autre modèle. De plus, grâce aux machines universelles de Turing, on sait que tout ce qui est intuitivement calculable est modélisable dans ces systèmes. Les conséquences sont importantes et nombreuses. La première fait que cet article est lisible : on peut construire des ordinateurs. Ceci fait un lien avec la théorie de la calculabilité (La théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est une branche de la logique mathématique et de l'informatique théorique. Alors que la notion intuitive...).

Page générée en 0.005 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique