En mathématiques, l'optimisation est l’étude des problèmes qui sont de la forme :
Une telle formulation est parfois appelée programme mathématique (terme non directement lié à la programmation informatique, mais utilisé par exemple pour la programmation linéaire - voir l’historique ci-dessous). Plusieurs problèmes théoriques et pratiques peuvent être étudiés dans cet encadrement général.
Etant donné que la maximisation de f est equivalente à la minimisation de − f, une méthode pour trouver le minimum (ou le maximum) suffit à résoudre le problème d'optimisation.
Il arrive fréquemment que A soit un sous-ensemble donné de l’espace euclidien
Un minimum local x * est défini comme un point tel qu'il existe un voisinage V de x * tel que pour tout
Il n’existe pas de méthode connue assurant quel que soit le type de fonction que l’on trouvera un extremum global.
Les problèmes d’optimisation sont souvent exprimés avec une notation spéciale. Voici quelques exemples :
On cherche la valeur minimale pour l’expression x2 + 1, où x s’étend sur les nombres réels
On cherche la valeur maximale pour l’expression 2x, où x s’étend sur les réels. Dans ce cas, il n’y a pas de tel maximum puisque l’expression n’est pas bornée, donc la réponse est " l’infini " ou " indéfini ".
On cherche la ou les valeurs de x dans l'intervalle
On cherche la ou les paires (x,y) qui maximisent la valeur de l'expression xcos(y), avec la contrainte ajoutée que x ne peut excéder 5. (À nouveau, la valeur minimale véritable de l'expression n'est pas importante.) Dans ce cas, les solutions sont les paires de la forme (5,2kπ) et ( − 5,(2k + 1)π), où k s'étend sur tous les entiers.
Les techniques pour résoudre les problèmes mathématiques dépendent de la nature de la fonction objectif de l'ensemble contraint. Les sous-domaines majeurs suivants existent :
Pour les fonctions dérivables deux fois, des problèmes sans contraintes peuvent être résolus en trouvant les lieux où le gradient de la fonction est 0 (par exemple les points stationnaires) et en utilisant la matrice hessienne pour classer le type de point. Si le hessien est défini positif, le point est un minimum local ; s’il est un défini négatif, un maximum local et s’il est indéfini c’est un " point-col ".
Si la fonction est convexe sur l’ensemble des solutions admissibles (définies par les contraintes) alors tout minimum local est aussi un minimum global. Des techniques numériques robustes et rapides existent pour optimiser des fonctions convexes doublement dérivables. En dehors de ces fonctions, des techniques moins efficaces doivent être employées.
Les problèmes à contraintes peuvent souvent être transformés en des problèmes sans contraintes à l’aide du multiplicateur de Lagrange : cette méthode revient en effet à introduire des pénalités croissantes à mesure qu’on se rapproche des contraintes. Un algorithme dû à Hugh Everett permet de mettre à jour de façon cohérente les valeurs des multiplicateurs à chaque itération pour garantir la convergence. Celui-ci a également généralisé l'interprétation de ces multiplicateurs pour les appliquer à des fonctions qui ne sont ni continues, ni dérivables. Le lambda devient alors juste un coefficient de pénalité.
De nombreuses techniques existent pour trouver un bon minimum local dans les problèmes d’optimisation non-linéaires avec plusieurs minimums locaux pauvres, elles sont généralement considérées comme des métaheuristiques.
Les problèmes de la dynamique à corps rigides (surtout la dynamique des corps rigides articulée) ont souvent besoin de techniques de programmation mathématique, puisqu'on peut voir la dynamique des corps rigides comme résolution d'une équation différentielle ordinaire sur une variété contrainte ; les contraintes sont diverses contraintes géométriques non-linéaires telles que " ces deux points doivent toujours coïncider ", ou " ce point doit toujours être sur cette courbe ". Aussi, le problème de calculer les forces de contact peut être achevé en résolvant un problème de complémentarité linéaire, qui peut aussi être vu comme un PPQ (problème de programmation quadratique).
Plusieurs problèmes de conception peuvent aussi être exprimés sous forme de programmes d’optimisation. Cette application est appelée l’optimisation de forme. Un sous-ensemble récent et croissant de ce domaine s’appelle l’Optimisation multidisciplinaire qui, bien qu’utile en plusieurs problèmes, a été particulièrement appliqué aux problèmes du génie aérospatial.
Un autre domaine qui utilise les techniques de l’optimisation est la recherche opérationnelle.
L’optimisation est un des outils centraux de la microéconomie qui est basée sur le principe de la rationalité et de l’optimisation des comportements, le profit pour les entreprises, et l’utilité pour les consommateurs.
Historiquement, le premier terme introduit fut celui de programmation linéaire, inventé par George Dantzig dans les années 1940. Le terme programmation dans ce contexte ne réfère pas à la programmation informatique (bien que les ordinateurs soient largement utilisés de nos jours pour résoudre des programmes mathématiques). Il vient de l’usage du mot programme par les forces armées américaines pour établir des horaires de formation et des choix logistiques, que Dantzig étudiait à l’époque. L’emploi du terme " programmation " avait également un intérêt pour débloquer des crédits en une époque où la planification devenait une priorité des gouvernements.