Une équation différentielle stochastique (EDS) est la donnée d’une équation du type dX = μ(X,t)dt + σ(X,t)dWt, où X est un processus aléatoire inconnu, que l’on appelle communément équation de diffusion. Intégrer l’EDS, c’est trouver l’ensemble des processus vérifiant la diffusion entière.
Intégrale de Wiener :
Notons le Mouvement Brownien (MB) par
On dit qu'une fonction
Alors, on pose :
Il est clair que
De plus, soit
Intégrale stochastique :
Soit Z le mouvement brownien standard défini sur l’espace probabilisé (Ω,A,F,P) et σ un processus adapté à F. On suppose par ailleurs que σ vérifie :
Alors, l’intégrale stochastique de σ par rapport à Z est la variable aléatoire :
Soit x un processus stochastique tel qu'on ait dx = adt + bdz où z est un processus de Wiener standard.
Alors d'après le lemme d'Itô, on a pour une fonction G = G(x,t)
Le processus d'Ornstein-Uhlenbeck est un processus stochastique décrivant (entre autres) la vitesse d'une particule dans un fluide, en dimension 1.
On le définit comme étant la solution Xt de l'équation différentielle stochastique suivante :
où Bt est un mouvement brownien standard, et avec X0 une variable aléatoire donnée. Le terme dBt traduit les nombreux chocs aléatoires subis par la particule, alors que le terme − Xtdt représente la force de frottement subie par la particule.
La formule d'Itô appliquée au processus etXt nous donne :
soit, sous forme intégrale :
Par exemple, si X0 vaut presque sûrement x, la loi de Xt est une loi gaussienne de moyenne xe − t et de variance 1 − e − 2t, ce qui converge en loi quand t tend vers l'infini vers la loi gaussienne centrée réduite.
Les méthodes de Monte-Carlo reposent sur la Loi des grands nombres : en répétant un grand nombre de fois une expérience, de façon (théoriquement) indépendante, on obtient une approximation de plus en plus fiable de la vraie valeur de l'espérance du phénomène observé.
De telles méthodes sont notamment utilisées en finance pour la valorisation d’options pour lesquelles il n’existe pas de formule fermée, mais uniquement des approximations numériques.