Calcul stochastique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le calcul stochastique est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, il est une extension de la théorie des probabilités.

Applications

Le domaine d’application du calcul stochastique comprend :

Filtrations

Une filtration Ft, t\in \mathbb{N} est une famille de sous-tribus emboîtées de Ω, qui peut s’interpréter comme l’information disponible qui évolue au cours du temps. Ainsi, une filtration est une famille de sigma-algèbres, indexée par le temps t \ge 0 telle que F_s \subset F_t si s \le t , ce qui reflète l'augmentation de l'information disponible.

Espérance conditionnelle selon une filtration

Processus aléatoires

Un processus aléatoire X est une famille de variables aléatoires indexée par un sous-ensemble de \R ou \N , souvent assimilé au temps (voir aussi Processus stochastique). C'est donc une fonction de deux variables : le temps et l'état du monde ω. L'ensemble des états du monde est traditionnellement noté Ω. L'application qui à un ω fixé associe X(ω,t) , t variable, est appelée trajectoire du processus; c'est une simple fonction du temps (sans caractère aléatoire) qui représente la réalisation particulière du processus sous l'occurrence ω. Pour un t donné , X(ω,t) est une simple variable aléatoire dont la valeur exacte n'est connue qu'en t. Le mouvement brownien est un exemple particulièrement simple de processus aléatoire indexé par \R . Il peut être défini comme l'unique processus Wt à accroissement gaussien tel que la corrélation entre Wt et Ws soit min(t,s). On peut également le voir comme la limite d'une marche aléatoire lorsque le pas de temps tend vers 0.

Autre prescription

Il existe une autre prescription notable pour définir une intégrale stochastique, c'est la prescription de Stratonovich. L'intégrale de Stratonovich est définie comme la limite des sommes discrètes

\sum X_{\frac{t_i+t_{i+1}}{2}} (B_{t_{i+1}} - B_{t_i}).

La différence notable avec la prescription d'Itô est que la quantité X_{(t_i+t_{i+1})/2} n'est pas indépendante au sens des probabilités de la variable B_{t_{i+1}} - B_{t_i} . Ainsi, contrairement à la prescription d'Ito, dans la prescription de Stratonovich on a

E\left[\int_{a}^{b} X_t\, \mathrm dB_t\right]\neq 0

ce qui complique, de ce point de vue, certains calculs. Cependant l'utilisation de la prescription de Stratonovich ne choisit pas une direction du temps privilégiée contrairement à celle d'Itô ce qui implique que les processus stochastiques définis par l'intégrale de Stratonovich satisfont des équations différentielles stochastiques invariantes par renversement du temps. Pour cette raison, cette prescription est souvent utilisée en physique statistique.

Il faut noter cependant qu'il est possible de passer de l'une à l'autre des prescriptions en effectuant des changements de variables simples ce qui les rend équivalentes. Le choix de prescription est donc une question de convenance.

Processus d'Itō

Le processus d'Itō, d'après le nom de son inventeur Kiyoshi Itō, traite des opérations mathématiques dans un processus stochastique. Le plus important est l'intégrale stochastique d'Itō.

Intégrale d'Itô

Avant le calcul, indiquons que :

  • Les majuscules telles que X notent les variables aléatoires.
  • Les majuscules avec en indice un t (par exemple Bt) notent un processus stochastique qui est une famille de variables aléatoires indexée par t.
  • Un petit d à gauche d'un processus (par exemple dBt) signifie un changement infinitésimal dans le processus aléatoire qui est une variable aléatoire.

L'intégrale stochastique d'un processus Xt par rapport à un processus Bt est décrite par l'intégrale :

\int_{a}^{b} X_t\, \mathrm dB_t

et est définie comme la limite en moyenne quadratique des sommes correspondantes de la forme :

\sum X_{t_i} (B_{t_{i+1}} - B_{t_i}).

Un point essentiel lié à cette intégrale est le lemme d'Itô.

La somme comme le produit de variables aléatoires est définie dans la théorie des probabilités. La somme implique une convolution de la fonction de densité des probabilités, et la multiplication est une addition répétée.

Définition d'un processus d'Itô

Une fois précisée la définition choisie pour une intégrale stochastique, on définit alors un processus d'Itô comme étant une processus stochastique Xt de la forme

X_t(\omega) = X_0(\omega) +\int_0^t u_s(\omega){\rm d}s +(\int_0^t v_s {\rm d}B_s)(\omega)

avec u et v deux fonctions aléatoires satisfaisant quelques hypothèses techniques d'adaptation au processus Bt et ω est une réalisation dans l'espace de probabilité sous-jacent.

Dans le formalisme du calcul différentiel avec la prescription d'Itô on note de façon équivalente la relation précédente comme

{\rm d}X_t = u_t\,{\rm d}t + v_t\,{\rm d}B_t
Page générée en 0.056 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise