Au début des années 1960, Bryan Birch et Peter Swinnerton-Dyer ont utilisé l'ordinateur EDSAC au laboratoire informatique de l'Université de Cambridge pour calculer le nombre de points modulo p (désigné par Np) pour un grand nombre de nombres premiers p sur des courbes elliptiques dont le rang était connu. À partir de ces résultats numériques, ils émirent la conjecture que Np pour une courbe E avec un rang r obéissent à la loi asymptotique
Initialement, ceci était basé sur quelque chose de ténu montré par des points graphiques qui ont induit un certain scepticisme chez le maître de Birch, J. W. S. Cassels.
Cela les conduisit à faire une conjecture sur le comportement de la fonction L d'une courbe elliptique L(E,s) en s = 1, expressément, qu'il y aurait un zéro d'ordre r en ce point. C'était une conjecture particulièrement spectaculaire car à cette époque, le prolongement analytique de L(E,s) au point s = 1 était seulement établi pour les courbes avec multiplication complexe.
Une version plus précise de la conjecture fut ensuite proposée, décrivant le résidu du zéro en s = 1 en fonction d'invariants arithmétiques de la courbe étudiés par Cassels, Tate, Shafarevich et d'autres.
Par exemple, considérons un polynôme en deux variables f(x,y) non nul dont les coefficients sont des nombres rationnels. Supposons que la courbe projective plane associée n'ait pas de singularités. Intéressons-nous aux solutions de l'équation f(x,y) = 0 en des nombres rationnels (x,y). Alors :
Considérons une courbe elliptique sur