En introduction à la construction homographique d'un cercle, la méthode des chemins de fer peut être citée. On veut, à partir d'un point O d'une ligne droite, prendre un virage à droite sur un angle=45 degrés avec un rayon R=300m, malheureusement on n'a pas accès au centre du cercle. Il faut pourtant tracer l'arc de cercle point par point en plantant des piquets avec une précision suffisante.
La méthode consiste à créer trois « échelles » X, Y, W graduées en n subdivisions égales, 16 par exemple, à relier les points correspondants des échelles X et W, à relier l'origine au point correspondant de l'échelle Y, le point d'intersection de ces 2 droites est un point P du cercle. Si les 16 points ne suffisent pas on peut encore subdiviser les 3 échelles en 32 parties, ou 64. Les échelles sont positionnées selon des calculs trigonométriques élémentaires. Le maximum (B) de l'échelle X est 2R*tan(angle/2), 248,53m dans notre exemple, le maximum de l'échelle Y est 2R*tan²(angle/2), le maximum de l'échelle W est R*sin(angle) et le positionnement de cette échelle est à l'ordonnée R*(1-cos(angle)).
Raisonnons à partir de l'angle v= OZX=OBY. La position de X sur son échelle est 2R*tan(v). La position de Y sur son échelle est 2R*tan(angletotal/2)*tan(v), la relation entre X et Y est
. Ceci illustre de manière analytique la propriété générale selon laquelle une conique est engendrée par l'intersection de deux faisceaux de droites en correspondance homographique, ici les faisceaux de centre Z et O.
Dans le plan de cette figure considéré comme plongé dans un plan projectif fondamental, on peut établir une (parmi d'autres possibles) transformation homographique entre les deux êtres mathématiques unidimensionnels que sont les faisceaux de centre Z et O. Ceci en se dispensant de travailler sur les échelles de points X et Y. On utilisera H, le point à l'infini dans la direction de l'axe OX et le faisceau de droites de centre H, c’est-à-dire le faisceau des droites parallèles à OX.
Or dans le triangle OKZ nous avons 2 hauteurs OF et KH qui se coupent en J qui est donc l'orthocentre. ce qui implique que l'angle en P est droit, donc que P est sur le cercle. On vérifie ainsi que la conique définie par la transformation projective unidimensionnelle T est bien le cercle considéré.
Cet exemple en géométrie projective se résume à tracer des points P d'une conique passant par les 3 points O,Z,F et possédant 2 tangentes OB et ZE. Elle se construit par les faisceaux de centre Z et O liés par l'homographie T. Au stade de la géométrie projective, tout ce qu'on peut affirmer c'est que l'ensemble des points P est une conique.