Le réseau Deep Space comporte trois complexes :
Ces trois lieux sont espacés d'environ 120° en longitude : l'idée est de permettre une couverture continue des sondes spatiales et pour cela la rotation de la Terre doit être compensée. Étant données les distances, une sonde spatiale apparaît en effet comme un corps céleste : il se lève à l'Est et se couche à l'Ouest 7h à 14h plus tard. La liaison radio sera alors transférée d'une station à l'autre quand la transmission ne sera plus possible.
Chaque complexe contient au minimum 4 stations, chacune d'entre elles contenant plusieurs antennes paraboliques. Plus précisément, dans chaque complexe, on trouvera plusieurs antennes de 34 mètres de diamètre, une de 26 mètres, une de 11 mètres et une de 70 mètres. Un centre de traitement du signal centralisé (signal processing center, SPC) contrôle à distance celles de 34 m de 70 m, génère et transmet les commandes pour les sondes spatiales, reçoit et traite la télémétrie.
Les antennes d'un même complexe peuvent travailler en réseau, ou même avec d'autres antennes en dehors du réseau Deep Space (par exemple, l'antenne de 70 mètres de Canberra peut être mise en réseau avec le radio télescope de l'Observatoire de Parkes en Australie, et l'antenne de 70 m de Goldstone peut être en réseau avec le Very Large Array au Nouveau-Mexique).
À l'heure actuelle, toutes les antennes du réseau Deep Space sont de type Cassegrain. Elles diffèrent par leur monture, leur diamètre, les fréquences dans lesquelles elles sont capables d'émettre et de recevoir, et de manière générale par les technologies mises en œuvre qui donneront différentes valeurs de gain et de température équivalente de bruit.
Puissance émission | Gain (émission) | G/T (réception) | |
---|---|---|---|
26 m bande S | 200 W à 20 kW | 52,5 dB | 31,8 dB [1/K] |
34 m HEF bande S | pas d'uplink | 56,0 dB | 40,2 dB [1/K] |
34 m HEF bande X | 200 W à 20 kW | 68,3 dB | 54,0 dB [1/K] |
34 m BWG bande S | 200 W à 20 kW | 56,7 dB | 41,0 dB [1/K] |
34 m BWG bande X | 200 W à 20 kW | 68,4 dB | 55,4 dB [1/K] |
34 m BWG bande Ka | 50 W à 800 W | 79,0 dB | 65,7 dB [1/K] |
70 m bande S | 200 W à 400 kW | 63,5 dB | 51,0 dB [1/K] |
70 m bande X | 200 W à 20 kW | 74,6 dB | 62,8 dB [1/K] |
Les performances du tableau ci-dessus sont donnés pour l'une des antennes de chaque type ; pour chaque type, les performances des autres antennes du réseau (dans les autres complexes) varient légèrement.
Le gain est donné sans prendre en compte l'atmosphère et le facteur de mérite G/T est mesuré à un angle d'élévation de 45 degrés dans des conditions de ciel clair. Des corrections sont donc à apporter à pour obtenir les valeurs à l'élévation et dans les conditions météorologiques voulues.
Remarquons enfin que le gain est mesuré à une certaine fréquence centrale f0 (ici la fréquence la plus basse de la bande, le gain à des fréquences plus élevées (resp. plus basses) devra être augmenté (resp. réduit) de 20log(f / f0). La même remarque est valable pour le G/T.
L'antenne de 34 m à haute efficacité (HEF) a été introduite au milieu des années 80, avec comme cahier des charges une réception ou émission sur les bande S et bande X simultanément. Sa première utilisation remonte à 1986 sur la mission Voyager 2 à destination de Saturne. Malgré son nom, l'efficacité de cette antenne est comparable à celle des autres antennes aujourd'hui en fonctionnement, mais comme elle a été conçue alors que des antennes de moindre efficacité étaient encore opérationnelles, le nom a été retenu.
Elle utilise une monture de type azimuth-élévation, opérant des rotations à la vitesse de 0.4 degrés par seconde. Les avancées technologiques apportées par cette antenne sont le cornet double-bande ne nécessitant pas de miroir dichroïque (coûteux en termes de pertes), et un procédé de fabrication des surfaces amélioré permettant d'augmenter l'efficacité.
Concernant les surfaces, la forme du réflecteur secondaire n'est plus un parfait hyperboloïde. Il est déformé (cette technique s'appelle le shaping) de telle sorte que l'illumination y soit plus uniforme. Un corrolaire indésirable est que la distribution de phase sur l'hyperboloïde n'est plus uniforme. On corrige cela en modifiant aussi la surface du paraboloïde, d'où finalement une distribution uniforme en amplitude et phase. L'antenne HEF est la première du réseau Deep Space à utiliser le shaping des surfaces. Pour ces opérations, le système global a été optimisé pour fonctionner en bande X, au détriment des performances en bande S.
Deux chemins sont prévus, selon que l'antenne fonctionne simultanément avec les polarisations circulaires droite et gauche, ou uniquement avec l'une d'entre elles. La première configuration utilise un duplexeur et présente une température de bruit supérieure.
Par ailleurs, deux amplificateurs faible bruit sont installés, l'un de type MASER à rubis et l'autre de type à base de transistor HEMT.
L'antenne de 34 m BWG Beam Wave Guide est la dernière conception en date pour le réseau Deep Space. Elle reprend les principales caractéristiques de l'antenne HEF. Le cornet est par contre délocalisé du point focal de l'hyperboloïde vers une salle en sous-sol ; l'onde est alors guidée par des miroirs d'environ 2,5 mètres de diamètre. L'avantage principal est que le refroidissement cryogénique est largement facilité puisqu'il n'a plus besoin d'être placé sur l'antenne elle-même. Il en va de même pour la maintenance. D'autre part, la pluie ne peut plus tomber dans le cornet, ce qui pouvait dégrader les performances.
Ce nouveau design a été l'occasion d'ajouter l'émission / réception en bande Ka : le procédé de fabrication des surfaces est suffisamment maîtrisé pour garantir la précision nécessaire.