Groupe ponctuel de symétrie - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Mathématiques

En mathématiques, l'explicitation d'un groupe orthogonal est une question largement étudiée. Un réseau est un quasi espace vectoriel, avec comme unique différence que les scalaires sont des nombres entiers. Cette analogie permet d'établir des théorèmes communs. Par exemple, à l'image de son analogue vectoriel, un réseau admet une base et tout point du réseau peut être repéré par un jeu de coordonnées, cette fois à valeurs entières.

Un point du réseau est identifié à un vecteur, et l'image de deux vecteurs par une isométrie est formée de deux vecteurs de même longueur, l'angle défini par les deux vecteurs initiaux étant le même que celui des deux vecteurs images. Dans un espace vectoriel de dimension 2, les seules isométries possibles sont les rotations autour d'un centre et les réflexions (symétries orthogonales par rapport à une droite). En dimension 3, on trouve les rotations autour d'un axe, les réflexions (symétries orthogonales par rapport à un plan, à l'image que ce que donnerait un miroir placé sur le point origine) et leurs composées. Cette définition est valable aussi bien pour les espaces vectoriels que pour les réseaux.

Les groupes orthogonaux sont néanmoins bien différents dans les deux cas. Dans le plan, les rotations sont aussi nombreuses que les points d'un cercle, elles sont en nombre infini. Mais l'image d'un point d'un réseau par une isométrie est un point du réseau situé à la même distance du centre ou de l'axe de rotation. Il n'existe qu'un nombre fini de points de cette nature. Le groupe orthogonal d'un réseau, quelle que soit sa dimension, est toujours fini.

Dans le cas de la dimension 2, déterminer tous les groupes orthogonaux possibles est suffisamment simple pour pouvoir être fait avec des outils rudimentaires issus de l'algèbre linéaire. Il n'existe que 4 configurations possibles et la plus vaste est décrite par un groupe à 12 éléments. En dimension 3, la question devient un peu plus ardue, le groupe le plus vaste contient déjà 48 éléments. S'il est possible de résoudre la difficulté avec les outils élémentaires, à l'image des travaux d'Auguste Bravais au milieu du XIXe siècle, une autre approche simplifie la tâche.

Le groupe orthogonal possède des propriétés algébriques. La composée de deux isométries, à savoir l'application de la première appliquée à la seconde, est encore une isométrie. Il en est de même pour la réciproque d'une isométrie et enfin, la loi de composition des applications linéaires est associative. Une telle structure, appelée groupe, est à l'origine d'une vaste théorie mathématique. Une de ses branches, dénommée théorie des représentations d'un groupe fini est particulièrement efficace pour répondre aux questions de la nature de celles traitées ici. L'article détaillé fait usage des techniques élémentaires de l'algèbre linéaire pour expliciter la structure du groupe orthogonal en dimension 2 et de celles de la représentation des groupes pour la dimension 3.

Groupes ponctuels cristallographiques

Il existe 2, 10 et 32 groupes ponctuels cristallographiques dans les espaces à 1, 2 et 3 dimensions respectivement.

Chaque groupe est noté par un symbole, le symbole de Hermann-Mauguin, qui permet de retrouver l'ensemble des opérations de symétrie constituant le groupe. Par exemple, le groupe 2/m2/m2/m est constitué de trois axes de rotation d’ordre 2 dans les trois directions du repère cristallographique, et de trois plans de réflexions m qui leur sont perpendiculaires. Les symboles de Hermann-Mauguin sont des symboles orientés : l’orientation de chaque élément de symétrie peut se lire à partir du symbole, en sachant que dans chaque système réticulaire les directions de symétrie sont données dans un ordre conventionnel.

Les symboles de Schoenflies sont moins employés en cristallographie, car il ne permettent pas d’indiquer l’orientation des éléments de symétrie par rapport au repère cristallographique.

Les groupes ponctuels cristallographiques sont classés selon la famille cristalline dans le tableau suivant.

Les groupes ponctuels cristallographiques
Dimensions de l’espace Famille cristalline Groupe holoèdre (Hermann-Mauguin) Groupes mérièdres correspondants
1 triclinique m 1
2 monoclinique 2 1
orthorhombique 2mm 2
tétragonale 4mm 4
hexagonale 6mm 3, 3m, 6
3 triclinique 1 1
monoclinique 2/m 2, m
orthorhombique mmm 222, mm2
tétragonale 4/mmm 4, 4, 422, 4mm, 42m, 4/m
hexagonale 3m 3, 3, 3m, 32
6/mmm 6, 6, 622, 6mm, 62m, 6/m
cubique m3m 23, m3, 432, 43m

Par exemple, dans la famille cristalline hexagonale de l'espace tridimensionnel il y a deux groupes holoèdres, 3m et 6/mmm qui correspondent aux deux réseaux, rhomboédrique et hexagonal, existant dans cette famille.

Page générée en 0.113 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise