En chimie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante.
En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace). Ils sont classés en groupes holoèdres et mérièdres, selon qu’ils décrivent la symétrie complète du réseau ou qu’ils soient des sous-groupes de ceux-ci. L'existence d'un réseau périodique comporte des restrictions sur l'ordre des rotations, qui en deux et trois dimensions sont limitées aux valeurs 1, 2, 3, 4 et 6, alors que ces restrictions ne s'appliquent pas aux objets non périodiques comme les molécules.
Cette question relève d'un problème mathématique plus général, les termes utilisés étant alors un peu différents. Elle correspond à l'analyse du groupe orthogonal d'un réseau. Un réseau est l'équivalent d'un espace vectoriel, à la différence que les scalaires sont les nombres entiers et non pas des éléments d'un corps. Le groupe orthogonal est le groupe des applications linéaires conservant les distances et les angles.
Les opérations ponctuelles sont de deux types :
À chaque opération de première espèce, on peut associer une opération de seconde espèce qui transforme le barycentre de l’objet comme l’opération de première espèce qui lui est associée. Lorsque l’objet n'est pas chiral, le résultat de l’application de ces deux opérations de symétrie est identique.
Note : dans des espaces à plus de 3 dimensions (non utilisés en cristallographie), de nouvelles espèces apparaissent où la chiralité est conservée dans une partie des dimensions mais inversée dans une autre partie : il s’agit de symétries « partielles » par rapport à un plan ou tout sous-espace possédant au moins 2 dimensions en moins par rapport à l’espace d’origine, ces symétries partielles pouvant se combiner sans nécessairement rétablir la chiralité d’origine mais en donnant des opérations d’autres espèces. Leur ordre de combinaison est alors important, les opérations n’étant pas nécessairement symétriques (ni même nécessairement associatives dans les espaces non euclidiens).
Une rotation d'angle 2π/n est indiquée par n dans la notation de Hermann-Mauguin, ou par C dans la notation de Schoenflies.
Une roto-inversion composée d'une rotation d'ordre n et d'une inversion est indiquée par n.
Les opérations de symétrie ponctuelle sont finalement classées de la manière suivante :