Microscopie électronique en transmission - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Instrumentation

Description

Schéma d'un MET.

Un microscope électronique en transmission est composé des principaux éléments suivants :

  • d'un canon à électron, qui fournit le faisceau électronique ;
  • de lentilles magnétiques ;
  • d'un système de détecteurs d'électrons.

Ces éléments sont placés dans un vide variant de 10 − 7 mbar pour le détecteur CDD à 10 − 10 mbar pour la source d'électron. Le microscope peut être équipé d'un détecteur de rayon X pour effectuer des analyses dispersives en énergie (EDXS en anglais pour energy-dispersive X-ray spectroscopy)

Autour du microscope se situe un réservoir d'azote liquide, qui sert à refroidir une certaine zone près de l'échantillon. De cette manière, les impuretés présentes dans le vide se condensent dans cette zone, et ne contaminent pas l'échantillon. Un second réservoir sert à refroidir le détecteur de rayon X, si le microscope en est équipé.

D'après l'hypothèse de Louis de Broglie dans l'hypothèse relativiste, les électrons possèdent une longueur d'onde donnée par :

\lambda_e = \frac{h}{\sqrt{2m_0eU(1+\frac{eU}{2E_0})}}

h,e, m0 et E0 = m0c2 = 511 keV sont respectivement la constante de Planck, la charge, la masse et l'énergie au repos de l'électron. Cette relation donne la longueur d'onde des électrons à partir de la tension d'accélération U :

U (kV) v/c λ (pm)
100 0,548 3,70
300 0,776 1,97
1000 0,941 0,87

Canon à électrons

Le faisceau d'électrons est produit au moyen d'un canon à électron. La stabilité et la brillance ont une importance particulière dans la qualité des mesures effectuées. Le canon doit extraire les électrons d'un matériau puis les accélérer. Il existe plusieurs types de source à électrons :

  • l'émission thermoïonique, avec les filaments de tungstène et pointes LaB6 ;
  • l'émission par effet de champ ;
  • la source Schottky à émission de champ, de plus en plus employée, qui un principe de fonctionnement intermédiaire.

Selon les systèmes, le faisceau d'électrons sera plus ou moins cohérent, c'est-à-dire que les électrons seront plus ou moins en phase. Une bonne cohérence permet une meilleure résolution des images.

Un canon à émission thermoïonique consiste en une pointe de métal en forme de V, qui est chauffée à haute température, ce qui fait que les électrons présents dans le métal se déplacent très vite. Un petit nombre d'électrons arrivent tellement vite à l'angle du V qu'ils sont éjectés du métal. Simultanément une différence de potentiel très importante ( entre 20kV et 120kV ) est appliquée. Les électrons qui sont sortis du métal sont accélérés par le potentiel de l'anode en direction de l'échantillon. D'une manière générale le canon à chauffage ne donne pas un faisceau très cohérent. Cela est dû au fait que la vitesse, et donc l'énergie cinétique des électrons émis, suit une distribution gaussienne. Il en découle une aberration chromatique. Il existe des filaments en tungstène et en hexaborate de lanthane. Ces derniers sont beaucoup plus chers mais fournissent une meilleure cohérence.

Un canon à émission de champ (en anglais Field Emission Gun ou FEG) est constitué d'une pointe de tungstène cristallin extrêmement acérée. L'extraction des électrons ne s'effectue pas par chauffage, mais en appliquant une différence de potentiel importante (2 à 7 kV). Cette source est caractérisé par une faible variabilité énergétique, et une bonne cohérence. Cependant elle nécessite un vide extrêmement poussé. Dans le cas contraire, la pointe du canon s'oxyde et l'effet d'émission chute drastiquement. Cette exigence en fait des machines très coûteuses et délicates.

Système de focalisation

Dans un microscope électronique en transmission, ce sont des lentilles magnétiques qui sont utilisés pour focaliser le faisceau électronique, car les lentilles électrostatiques ne sont pas adaptés pour les tensions élevées. En effet, des tensions de centaines de kilovolts doivent être disposées au plus près possible les unes des autres, ce qui pose des problèmes d'isolations électriques.

Une lentille magnétique consiste en une bobine parcourue par un courant. Le mouvement des électrons dans les lentilles est alors régi par la force de Lorentz \vec{F} = -e \vec{v} \wedge \vec{B} . Le travail effectué par cette force est nul, cela signifie que les électrons ne perdront pas d'énergie et seront seulement déviés lors de leurs passages dans le champ magnétique.

Cet ensemble de lentilles présente l'avantage de pouvoir changer la focalisation simplement en changeant le courant passant dans les bobines. Malgré ces différences avec les lentilles optiques, les lois de l'optique géométrique peuvent être appliquées.

Aberrations

Si le microscope électronique en transmission était parfait, sa résolution serait de l'ordre de grandeur de la longueur d'onde des électrons. Pour des électrons accélérés à environ 100 kV, elle serait de l'ordre du picomètre (10-12 m). Cependant l'optique électronique est bien moins efficace que l'optique photonique et contient des aberrations pouvant être classées en trois groupes suivant leurs origines :

  • aberrations géométriques, comme l'aberration sphérique et l'astigmatisme ;
  • aberrations chromatiques, dues aux faibles variations de l'énergie du faisceau autour d'un certaine valeur, il n'est pas monochromatique ;
  • aberrations de charge d’espace, dues aux répulsions coulombiennes dans le faisceau.

Le faisceau n'est pas monochromatique pour plusieurs raisons. Le canon à électron fournit un faisceau avec une certaine variation chromatique, c'est-à-dire que les électrons émis ont une énergie qui varie autour d'une certaine valeur. Suivant les sources d'électrons, cette variation est plus ou moins grande, les sources FEG ont en général une dispersion en énergie plus faible. La tension d'accélération des électrons peut aussi fluctuer dans le temps. De plus, lorsque le faisceau traverse l'échantillon, il se produit des diffusions inélastiques dans l'échantillon, ce qui peut produire des pertes de plusieurs centaines d'électrons-volt.

À la différence de l'optique photonique, il se produit des interactions entre les électrons dans le faisceau, dus à l'interaction coulombien. Si le faisceau est très intense, cela produira des aberrations de charge d'espace qui ne concerne généralement pas les MET.

De plus, il faut que le vide dans la colonne soit très bon, sinon, il se produit des interactions entre le faisceau électronique et les molécules résiduelles du vide. Cela a pour conséquence de modifier l'énergie des électrons et donc d'augmenter l'aberration chromatique et de perturber la trajectoire concernée. Ceci nécessite pour les MET un vide meilleur que 10-8 Torr.

La résolution pratique est de quelques angströms. Elle est en général limitée par l'aberration sphérique, sauf pour les microscopes possédant un correcteur d'aberration sphérique, où elle est alors limitée par l'aberration chromatique.

Page générée en 0.107 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise