Nombre complexe fendu - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Histoire

L'usage des nombres complexes fendus remonte à 1848 lorsque James Cockle exposa ses Tessarines. William Kingdon Clifford utilisa les nombres complexes fendus pour représenter les sommes de spins en 1882. Clifford appela les éléments « motors ».

Dans le vingtième siècle, les nombres complexes fendus devinrent une plateforme commune pour décrire les transformations de Lorentz de la relativité restreinte, dans un espace-temps plat car un changement de vitesse entre des cadres de référence est élégamment exprimé par une rotation hyperbolique.

En 1935, J.C. Vignaux et A. Duranona y Vedia développèrent l'algèbre et la théorie des fonctions géométriques complexes fendues dans quatre articles dans Contribucion a las Ciencias Fisicas y Matematicas, Universidad Nacional de La Plata, Republica Argentina (en espagnol).

Plus récemment, le plan des nombres complexes fendus a été exploité pour exprimer des idées mathématiques, des requêtes et des fonctions. C'est un pont important entre une structure comme le plan complexe ordinaire et le caractère exotique des créations modernes.

Représentations matricielles

Comme dans le cas des nombres complexes (usuels), on peut facilement représenter les nombres complexes fendus par les matrices. Le nombre complexe fendu

z = x + j.y = 1.x + j.y\,

peut être représenté par la matrice

z \mapsto \begin{bmatrix}x & y \\ y & x\end{bmatrix}

car

1 \mapsto \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}

et

j \mapsto \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}

L'addition et la multiplication des nombres complexes fendus sont alors donnés par l'addition et la multiplication matricielle. La norme de z est donnée par le déterminant de la matrice correspondante. La conjugaison complexe fendue correspond à la multiplication des deux côtés par la matrice

C = \begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}

La rotation hyperbolique par e^{(j.\theta)}\, correspond à la multiplication par la matrice

\begin{bmatrix}\cosh\theta & \sinh\theta \\ \sinh\theta & \cosh\theta\end{bmatrix}

En travaillant dans la base diagonale, cela nous conduit à la représentation matricielle diagonale

z \mapsto \begin{bmatrix}x - y & 0 \\ 0 & x + y\end{bmatrix}

Les rotations hyperboliques dans cette base correspond à la multiplication par

\begin{bmatrix}e^{-\theta} & 0 \\ 0 & e^{\theta}\end{bmatrix}

qui montre qu'elles sont des applications encadrantes.

Synonymes

  • (Réel) Tessarines James Cockle 1848
  • (Algébrique) motors W.K. Clifford 1882
  • numeros complejos hiperbolicos J.C. Vignaux 1935
  • double nombres I.M. Yaglom 1965 et Hazewinkle 1990
  • anormal-complex Zahlen W. Benz 1973
  • nombres perplexes P. Fjelstad 1986
  • nombres de Lorentz F.R. Harvey 1990
  • nombres complexes hyperboliques G. Sobczyk 1995
  • nombres complexes fendus B. Rosenfeld 1997
Page générée en 0.079 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise