Nombre complexe fendu - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés algébriques

En termes d'algèbre générale, les nombres complexes fendus peuvent être décrits comme le quotient de l'anneau polynomial \mathbb{R}[x]\, par l'idéal généré par le polynôme formel X^2 - 1\, ,

\mathbb{R}[x]/(x^2 - 1)\, .

L'image de x dans l'ensemble-quotient est l'unité imaginaire j. Avec cette description, il est clair que les nombres complexes fendus forment un anneau commutatif de caractéristique 0. De plus, si nous définissons une multiplication scalaire de manière évidente, les nombres complexes fendus forment une algèbre associative et commutative sur les nombres réels de dimension deux. L'algèbre n'est pas un corps puisque les éléments nuls ne sont pas inversibles. En fait, tous les éléments nuls différents de zéro sont des diviseurs de zéro. Puisque l'addition et la multiplication sont des opérations continues en respectant la topologie usuelle du plan, les nombres complexes fendus forment un anneau topologique.

Les nombres complexes fendus ne forment pas une algèbre normée dans le sens usuel du mot puisque la « norme » n'est pas définie positivement. Néanmoins, si on étend la définition pour inclure les normes de signature générale, ils forment une telle algèbre. Ceci s'ensuit du fait suivant

\lVert zw \rVert = \lVert z \rVert \lVert w \rVert\,

Pour un exposé sur les algèbres normées de signatures générales, voir la référence par Harvey.

Les nombres complexes fendus sont un cas particulier d'une algèbre de Clifford. Nommément, ils forment une algèbre de Clifford sur un espace vectoriel à une dimension avec une forme quadratique définie négativement. Comparer ceci avec les nombres complexes qui forment une algèbre de Clifford sur un espace vectoriel à une dimension avec une forme quadratique définie positivement. (NB : certains auteurs permutent les signes dans la définition d'une algèbre de Clifford ce qui interchangera le sens de définie positivement et de définie négativement).

Géométrie

L'ensemble des points z tels que z : \lVert z \rVert = a^2\, est une hyperbole pour tout a de \mathbb{R} différent de zéro. L'hyperbole est constitué d'une branche gauche et droite passant par a et - a. Le cas a = 1 est appelé l'hyperbole unité. L'hyperbole conjuguée est donnée par

z : \lVert z \rVert = - a^2\,

avec une branche supérieure et inférieure passant par ja et - ja. L'hyperbole et l'hyperbole conjuguée sont séparée par deux asymptotes diagonales qui forment l'ensemble des éléments nuls :

z : \lVert z \rVert = 0\,

Ces deux droites (parfois appelées le cône nul) sont perpendiculaires et ont des pentes de \pm 1\, .

L'analogue de la formule d'Euler pour les nombres complexes fendus est

e^{(j.\theta)} = \cosh(\theta) + j.\sinh(\theta)\,

Ceci peut être déduit du développement en série de puissances utilisant le fait que cosh a seulement des puissances paires tandis que sinh a des puissances impaires. Pour toutes les valeurs réelles de l'angle hyperbolique \theta\, , le nombre complexe fendu \lambda = e^{(j.\theta)}\, est de norme 1 et est lié à la branche droite de l'hyperbole unité.

Puisque \lambda\, est de norme 1, en multipliant tout nombre complexe fendu z par \lambda\, , la norme de z est préservée et représente une rotation hyperbolique (aussi appelée une transformation de Lorentz). En multipliant par \lambda\, la structure géométrique est préservée, prenant les hyperboles par elles-mêmes et le cône nul par lui-même.

L'ensemble de toutes les transformations du plan complexe fendu qui préserve la norme (ou de manière équivalente, le produit interne) forme un groupe appelé le groupe orthogonal généralisé O(1,1). Ce groupe est constitué des rotations hyperboliques - qui forme un sous-groupe noté SO^+(1,1)\, - combiné avec quatre réflexions discrètes données par

z\mapsto\pm z et z\mapsto\pm z^{*} .

L'application exponentielle

\exp : \mathbb{R} \rightarrow SO^+(1,1)\,

qui associe \theta\, à la rotation par e^{(j.\theta)}\, est un isomorphisme de groupe puisque la formule usuelle des exponentielles s'applique :

e^{j(\theta+\phi)} = e^{j\theta}e^{j\phi}\,
Page générée en 0.129 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise