Représentation induite d'un groupe fini - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques une représentation induite est une méthode de construction d'une représentation d'un groupe. Cet article traite le cas des groupes finis.

Une représentation induite permet de construire à l'aide d'un sous-groupe une représentation du groupe.

Définitions et exemples

Définitions

Dans tout l'article, G désigne un groupe fini d'ordre g, (V, ρ) une représentation de G dans un espace vectoriel sur un corps K de caractéristique différente de deux et tel que les caractères irréductibles de G forment une base orthonormale des fonctions centrales à valeur dans K. On peut prendre par exemple pour K le corps des nombres complexes. H désigne un sous-groupe de G et (W, θ) une sous-représentation de la restriction de ρ à H.G/H désigne l'ensemble des classes à gauche modulo H.

Une première remarque est nécessaire avant d'établir la définition d'une représentation induite :

  • Soit s et t deux éléments de G choisis dans une même classe à gauche modulo H, les espaces vectoriels image de W par ρs et ρt sont égaux.

En effet, il existe un élément u de H tel que t = su, et donc si o désigne la composition de fonctions, alors ρt est égal à ρsoρu. Or l'image de W par ρu est égal à W, car ρu est un automorphisme laissant W stable.

Soit c une classe à gauche de G/H, Wc désigne l'image par ρs, où s est un élément de c, de W. Il devient alors possible d'exprimer la définition d'une représentation induite :

  • La représentation (V, ρ) est dite induite par celle de (W, θ) si et seulement si V est la somme directe des espaces Wc quand c parcourt G/H. Dans ce cas, la représensation ρ est noté Ind (θ) ou encore IndHG (θ) si un risque d'ambiguïté existe.
  • Le caractère de ρ est appelée caractère induit de G par la représentation θ. Si χ désigne le caractère de θ, celui de ρ est noté Ind (χ) ou encore IndHG (χ) si un risque d'ambiguïté existe.

Ces définitions possèdent un sens car il existe une et une unique représentation de G induite par θ. La démonstration est donnée à la suite dans cet article.

L'induction possède une réciproque, elle correspond à la restriction de la représentation au sous-groupe H. Cette restriction est noté Res (ρ) ou encore ResHG (ρ) si un risque d'ambiguïté existe.

Exemples

Les deux articles Représentations du groupe symétrique d'indice trois et Représentations du groupe des quaternions utilisent les représentations induites pour construire une représentation irréductible.

  • Si H est le sous-groupe trivial de G, alors, la représentation induite sur G par la représentation triviale de H - qui est la seule représentation irréductible de H - est la représentation régulière.
  • Soit (W, θ) la représentation régulière de H, La représentation régulière de G possède comme base canonique une base partionnée par les classes à gauche de H. En conséquence, la représentation régulière de G est induite par (W, θ).
  • Si H=G, alors l'induction de H à G est une opération triviale.

Caractère

Formule du caractère

Soit (W, θ) une représentation de H sur le corps K, Ind (θ) ou IndHG (θ) désigne la représentation induite de G par (W, θ), et ψ désigne le caractère de θ. Soit (V, ρ) une représentation de G sur le corps K, La restriction de cette représentation à H est notée Res (ρ) ou ResHG (ρ) et son caractère χ :

  • Si s est un élément de G, ψ désigne le caractère de θ, la représentation de H, C un système de représentants des classes de conjugaison (c’est-à-dire un représentant dans chaque classe) et h l'ordre de H, alors la valeur du caractère χ au point t de G est donnée par la formule :
\forall t \in G \quad \chi(t)=\sum_{c\in C / c^{-1}tc \in H} \psi(c^{-1}tc) = \frac 1h \sum_{s\in G / s^{-1}ts \in H} \psi(s^{-1}ts)\;

Il est possible de généraliser la fonction IndHG à l'espace vectoriel des fonctions centrales de H de la manière suivante :

  • Soit f une fonction centrale de H à valeur dans K et C un système de représentants des classes à gauche, alors la fonction IndHG (f ) est définie de la manière suivante :
\forall s \in G \quad Ind_H^G \; f(s) = \sum_{c\in C \, c^{-1}sc \in H} f(c^{-1}sc) \;

La démonstration est donnée dans l'article Réciprocité de Frobenius.

Réciprocité de Frobenius

Avec les notations du paragraphe précédent, la formule de réciprocité de Frobenius s'exprime par :

  • Les deux scalaires suivants sont égaux :
<Ind_H^G \;\psi\; |\; \chi>_G=<\psi\; |\; Res_H^G\; \chi>_H

Il est possible de généraliser la formule :

  • Soit f une fonction centrale de H et g une fonction centrale de G, alors l'égalité suivante est vérifiée :
<Ind_H^G \; f\; |\;g>_G=<f\; |\;Res_H^G \; g>_H

Une autre manière d'exprimer cette propriété est la suivante :

  • L'application IndHG est l'adjointe de ResHG.
Page générée en 0.137 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise