Un ressort à lames est un type de ressort où l'on utilise la flexibilité d'une ou plusieurs lames métalliques superposées et leur propriétés élastiques pour absorber l'énergie mécanique, produire un mouvement, exercer un effort ou un couple sur système. On compte deux configuration d'usage: une extrémité des lames est fixe et l'autre subit la force à restituer ou les deux extrémités sont fixes et la force à restituer s'exerce au centre des lames.
Ce type de ressort est surtout utilisé pour la suspensions de véhicules afin de ramener les roues dans leur position initiale après une bosse ou un cahot (deux extrémités fixes). C'est aussi le dispositif retenu en organologie pour la réalisation des ressorts de rappel de certaines clefs d'instruments à vent comme la clarinette (une extrémité fixe).
Nous nous contenterons ici d'un calcul de prédimensionnement (on dit parfois d' « équarrissage ») permettant de se faire une idée approximative de l'encombrement qu'aurait un véritable ressort à lames réalisé selon les règles de l'art. Une lame encastrée à une extrémité et chargée à l'autre peut évidemment servir de ressort mais les contraintes maximales règnent du côté de l'encastrement tandis que l'extrémité libre, qui a le même module de flexion I/v que l'autre, est peu sollicitée.
Pour mieux utiliser la matière, on cherche évidemment à se rapprocher d'une forme d'égale résistance qui est dans ce cas de figure une forme de largeur constante et de hauteur variant selon une loi parabolique (solution utilisée par exemple sur le TRAFIC de Renault), ou bien une lame triangulaire de hauteur constante, qui va nous servir de base de calcul.
Si bo est la largeur de cette lame au niveau de l'encastrement et L sa longueur, la largeur de la lame au point M d'abscisse x s'écrit :
Le moment de flexion en M est
La contrainte maximale de flexion est constante tout au long de la lame :
Dans l'hypothèse, classique mais ici irréaliste, des petits déplacements, nous pouvons calculer la flèche f de l'extrémité libre sous l'effet de la charge P :
Les deux conditions de résistance et de déformation imposent ensemble l'épaisseur maximale de la lame :
Une fois l'épaisseur arrondie à une valeur normalisée, il en résulte la détermination de bo, qui donne généralement des dimensions prohibitives pour la lame.
Elle découle du calcul précédent :
Les formes réelles seront assez éloignées de la forme théorique d'égale résistance que nous venons de voir :
Si l'on ajoute la possibilité de réaliser des ressorts à lames étagées de toutes formes, symétriques ou non, à faible ou forte courbure, etc., il devient évident que les formules théoriques établies au début de ce paragraphe doivent être pour le moins revues et corrigées. En fait, chaque ressort nécessite une étude individualisée.
Le frottement entre les lames produit des pertes d'énergie notables (le travail de déformation du ressort est loin d'être intégralement restitué au moment de la détente) mais ces pertes contribuent à l'amortissement des vibrations, par exemple dans le cas des ressorts de suspension. Cependant, outre le fait qu'il fausse un peu plus les formules, le frottement est capable d'engendrer le phénomène de corrosion-frottement (poudre rouge) très destructeur. Pour éviter ou au moins pour freiner cette forme particulière d'usure, une lubrification protectrice est absolument indispensable et il ne faut surtout pas que l'état de surface des lames soit trop bon. Au contraire, il faut utiliser les lames « brutes de laminage ».