Quelle obstruction rencontre-t-on dans le cas d'une matrice à coefficients dans un anneau euclidien? La principale est que la non nullité d'un coefficient n'assure pas qu'on puisse s'en servir comme pivot pour des opérations de transvection : dans l'exemple précédent, on s'est servi de 2 comme pivot, et on a été amenés à faire des calculs avec son inverse ; ce faisant, on est sorti du cadre initial d'une matrice à coefficients entiers.
Il existe un palliatif. Regardons pour une matrice de taille
Dans le cas où a et b sont non nuls, soit p un plus grand diviseur commun de a et b. On considère alors la matrice :
avec la relation
on s'est ainsi ramené à une matrice colonne avec un coefficient nul, par une opération sur les lignes de la matrice A ; on peut voir cette opération comme une généralisation de la transvection. Remarquons que la matrice de transvection généralisée T est inversible puisque de déterminant (égal à 1) inversible dans l'anneau considéré. Dans la cas où b est nul, on prend T = Id, dans le cas où a est nul, on prend
Pour traiter le cas d'une matrice colonne de taille quelconque, il suffit d'effectuer d'abord une opération entre la première et la deuxième ligne, pour annuler le deuxième coefficient, puis entre la première et la troisième pour annuler le troisième, etc. Ainsi, pour
Le cas d'une matrice ligne s'en déduit par transposition.
On s'intéresse maintenant à des matrices de taille
avec αδ − βγ = 1, où les coefficients α,β apparaissent sur la ligne i, et γ,δ sur la ligne j. On remarque la relation suivante :
Multiplier une matrice A, dont les lignes sont Li, à gauche par une telle matrice, c'est remplacer la ième ligne Li de A par αLi + βLj, et la jème ligne par γLi + δLj. Pour obtenir une opération sur les colonnes, il faut effectuer une multiplication à droite par une matrice de transvection généralisée.
Dans le cas où α = δ = 1, et où un des deux coefficients β ou γ est nul, on retrouve une matrice de transvection proprement dite ; dans le cas où α = δ = 0, et β = − γ = + − 1, on trouve une matrice qui va jouer le rôle de matrice de transposition ; convenons d'appeler anti-transposition l'opération correspondante.
Commençons à décrire l'algorithme. Pour une matrice :
on commence par multiplier à gauche par des matrices de type T1,j, pour j allant de 2 à n ; on effectue ces opérations en considérant seulement leur effet sur le premier vecteur colonne de la matrice A. D'après ce qu'on a vu pour les opérations sur les lignes d'un vecteur colonne, on parvient ainsi à annuler tous les coefficients sous-diagonaux de la première colonne de A, et le premier coefficient de la nouvelle matrice est précisément un pgcd des coefficients de la première colonne de A :
On veut ensuite multiplier par des matrices de type T2,j, pour j > 2, pour annuler tous les coefficients sous-diagonaux de la deuxième colonne ; de telles opérations ne font pas intervenir la première ligne ; tous les coefficients de la première colonne, autre que celui en position (1,1), qui seront ainsi obtenus seront donc combinaison linéaire des coefficients nuls de la première colonne : ils seront nuls. Il faut ensuite multiplier par des matrices de type T3,j, pour annuler les coefficients sous-diagonaux de la troisième colonne, etc.
On obtient en définitive une égalité avec une matrice de la forme :
L'échelonnement en colonnes s'en déduit par transposition.
Soit
L'algorithme d'échelonnement est suffisant pour bon nombre de calculs : le rang de la matrice A est égal au nombre de lignes non nulles de sa forme échelonnée ; le déterminant, dans le cas d'une matrice carrée de rang maximal, sera le produit des coefficients pi de la matrice échelonnée.
On peut aussi en déduire des équations et paramétrisations des noyaux et images des matrices, vues comme applications linéaires ; par exemple, pour