Théorie des cordes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les différentes théories des cordes

Théorie des cordes bosoniques

La théorie bosonique des cordes à 26 dimensions est la théorie originale des cordes et la plus simple. La formulation de la théorie sur son feuillet d'univers ne contient que des bosons d'où son nom. Elle contient un tachyon (type de particule hypothétique dont l'énergie est une quantité réelle et la masse (au repos), un imaginaire pur), ce qui est une indication que la théorie est instable, et donc impropre à décrire la réalité.
Elle est toutefois utile pédagogiquement pour se familiariser avec les concepts fondamentaux que l'on retrouve dans des modèles plus réalistes. En particulier au niveau de masse nulle, elle fait apparaitre le graviton. Elle admet des cordes ouvertes ou fermées.

Théorie des supercordes

Il existe en fait cinq théories des supercordes. Elles ont en commun un univers à 10 dimensions qui ne possède pas de tachyons et supposent l'existence d'une supersymétrie sur la feuille d'univers des cordes, aboutissant à l'existence de supersymétries dans l'espace-cible :

    • I : cordes ouvertes ou fermées, groupe de symétrie SO(32)
    • IIA : cordes fermées uniquement, non-chiralité
    • IIB : cordes fermées uniquement, chiralité
    • HO : cordes fermées uniquement, hétérodicité, groupe de symétrie SO(32)
    • HE : cordes fermées uniquement, hétérodicité, groupe de symétrie E8×E8

Les théories des supercordes se distinguent de la première par l'existence d'une symétrie supplémentaire, la supersymétrie, laquelle s'est avérée nécessaire lorsque l'on a souhaité incorporer les fermions (la matière) dans la théorie bosonique des cordes.

Il semblerait que ces cinq théories soient différentes limites d'une théorie encore mal connue, reposant sur un espace à 11 dimensions (10 spatiales et une temporelle), appelée théorie M, laquelle admettrait la supergravité maximale développée dans les années 1970 comme théorie effective de basse énergie. Cette hypothèse a été proposée par Horava et Witten dans les années 1990 et a amené l'introduction d'autres objets étendus en plus des cordes. On parle de p-branes, p étant un entier qui indique le nombre de dimensions spatiales de l'objet en question. Elles sont décrites perturbativement comme les sous-espaces sur lesquels vivent les extrémités de cordes ouvertes. L'étude du spectre montre que des D1, D3, D5, D7 et D9 branes peuvent être incorporées dans un espace-cible décrit par la théorie IIB tandis que dans un espace où vivent des cordes de type IIA on peut introduire des branes de type D0, D2, D4, D6 et D8. Les D1 ont le même nombre de dimensions qu'une corde fondamentale (notée usuellement F1). Bien qu'étant deux objets distincts, une symétrie non-perturbative de la théorie IIB, appelée S-dualite, qui a subi un nombre important de vérifications indirectes, possède la propriété d'échanger D1 brane avec la F1.

Théorie M

Lorsque la constante de couplage gs augmente, les surfaces d'univers contribuant significativement aux interactions sont de plus en plus compliquées. On a illustré ici une surface de genre 4.

La théorie M, alliée à la supergravité à 11 dimensions, est l'aboutissement des cinq théories des cordes. Elle a été proposée par Edward Witten, en 1995. Lors de la conférence Strings'95, il introduit la notion de couplage qui décrit la probabilité avec laquelle deux cordes peuvent se fondre en une, puis se re-séparer. Il démontre que si on élève la constante de couplage de la corde Hétérotique E, d'un nombre négatif, à un nombre positif, cela met en évidence la supergravité. L'origine du nom de la Théorie M est assez incertaine, et donne lieu à des plaisanteries.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise